A Few Scraps Regarding Ch 2

- computation of \(r \)
 1) note: \(r = \frac{1}{n} \sqrt{r^2} \)
 2) or use JMP "multivariate" function
 3) or use a calculator
 - Cautions / Caveats about Interpretation

1) The least squares line and \(r \) (or \(R^2 \)) are highly sensitive to a few "extreme" data points.

2) \(r, R^2 \) measure only linear association.

3) There is a perfect x-y relationship here, but it's not a straight line relationship.

4) correlation in not necessarily causation.

On to Ch 10 and Inference in SLR.
To support this, a model is needed. The most convenient and commonly used such model is the Normal Simple Linear Regression Model.

In words: The relationship between x and average y is linear ($My|x = \beta_0 + \beta_1x$) and for a given x, y is normal with standard deviation σ.

BTW, this really is not much different from what we did in Ch6 or Ch7 except that now we let the mean response change with x (the predictor/explanatory variable).

1st issue if I'm going to use such a model is simple number estimates of model parameters (β_0, β_1). Unknown values in model:

This means no variable y is for fixed x.

Positive

Picture:

$My|x = \beta_0 + \beta_1x$

In Symbols:

$y = (\beta_0 + \beta_1x) + \epsilon$

accounts for deviation of y above or below the line.

takes care of setting y change with x.

To estimate model parameters β_0, β_1, we’ll be and b_1, least squares intercept and slope from Ch2.

For σ (a measure of variability in y for a given x) a measure of how much y misses the line $My|x = \beta_0 + \beta_1x$... the standard deviation of ϵ in model equation.

Well, do the following.
observed values from least squares line

\[\sqrt{\frac{\sum (y_i - \hat{y}_i)^2}{n-2}} = S_{\text{SLR}} \]

JMP
root mean square error

Example Real Estate - For the SLR model I'll estimate \(\beta_0 \) with \(b_0 = 16.008 \), \(\beta_1 \), with \(1.9001 = b_1 \), and \(\sigma \) with \(s = \text{RMSE} = 3.53 \)

Confidence limits for \(\sigma \)
These can be based on a \(z^2 \) distribution with \(df = n-2 \)

\[(s \sqrt{\frac{n-2}{u}}, s \sqrt{\frac{n-2}{L}}) \]

Example Real Estate 95% confidence limits for \(\sigma \)

\[(3.53 \sqrt{\frac{10-2}{17.535}}, 3.53 \sqrt{\frac{10-2}{2.180}}) \]

2.38 6.76

interpretation of the last of these is that I'm estimating that the std dev of price for any fixed home size is about 3.53 (\$1000)

BTW

\[S_{\text{SLR}} = \sqrt{\frac{\text{SSE}}{n-2}} \]

confidence limits? (I want to quantify how precise \(b_0, b_1, \sigma \) are as estimates of \(\beta_0, \beta_1, \sigma \))

Confidence limits for \(\beta_1 \)
(\(\beta_1 \) is the rate of change of mean \(y \) wrt \(x \), ... change in mean \(y \) that accompanies a unit change in \(x \))

\[b_1 \pm t \cdot \text{SE}_{b_1} \]

slope of l.s. line : n-2 = df

\[s \sqrt{\frac{\sum (x_i - \text{mean})^2}{n-1}} \]

\[n \cdot \frac{S_{\text{SLR}}^2}{(n-1) \cdot \sigma^2} \]
Example Real Estate

95% confidence limits for the increase in average price that accompanies a unit increase in size (β_1)

$$b_1 = \pm \frac{s}{\sqrt{\sum (x-x)^2}} SE_{b_1}$$

$$1.5001 \pm 2.306 \sqrt{\frac{3.53}{20.6}}$$

SE$_{b_1}$ = 2.486

Confidence limits for β_0 (average y for a particular x)

(e.g. This could be average price per hour of size 11 (10 ft2))

$$d.f. = n-2$$

Value at which I'm estimating from the n data points in hand

Exercise For "by hand" problem

1) Make 95% confidence limits for σ

2) Make 95% confidence limits for β_1

$$S = \sqrt{\frac{\sum (y - \bar{y})^2}{n-2}} = \sqrt{1.60} = .7303$$

Limits for σ:

$$(.7303 \sqrt{\frac{5-2}{2.348}}, .7303 \sqrt{\frac{5-2}{2.166}})$$

Limits for β_1:

$$-1.2 \pm 3.162 \cdot .7303$$

Prediction limits for y_{new} at x

$$\hat{y} \pm t \cdot SE_{\hat{y}}$$

$$b_0 + b_1 x \pm S \sqrt{\frac{1}{n} + \frac{(x-x)^2}{2 \sum (x-x)^2}}$$

$$d.f. = n-2$$

$$(SE_{\hat{y}})^2$$

$$(\frac{1}{n})$$

45
Example Real Estate Problem

\[x = 20 \quad \text{(2000 sq. ft. home)} \]

- 95% CI for average price
- 95% PI for next price

\[\bar{y} = 16.0081 + 1.5001(20) = 54.010 \]

CI for an average price (for houses of this size)

\[54.010 \pm 2.306(3.53) \sqrt{\frac{1}{10} + \frac{(20-18.8)^2}{201.6}} \]

upper 2.5% of t₈

Exercise: \[\bar{y} = 2.0 -1.2(1) = .8 \]

Confidence limits:

\[.8 \pm 3.182 (.73) \sqrt{\frac{1}{5} + \frac{(1-0)^2}{10}} \]

.8 ± 1.27 ≤

Prediction limits:

\[.8 \pm 3.182 (.73) \sqrt{1 + \frac{1}{5} + \frac{(1-0)^2}{10}} \]

.8 ± 2.65

JMP CE+PI's read off graphs!!

\[54.010 \pm 2.664 \]

PI for an additional price if \(x = 20 \)

\[54.010 \pm 2.306(3.53) \sqrt{1 + \frac{1}{16} + \frac{(20-18.8)^2}{201.6}} \]

54.010 ± 8.565

Exercise: For "by hand" data at \(x = 1 \)

make 95% confidence limits for many 95% prediction limits for your new

Note that the CI's for \(y_1 | x \) and PI's for \(y_{new} \) are narrowest at \(x = \bar{x} \) ... That makes sense

Also (a comment I should have made earlier about estimating \(\beta_1 \)) because

\[SE_{\hat{b}_1} = \frac{s}{\sqrt{2(\bar{x}_i - \bar{x})^2}} \]

The more spread out the data pairs are horizontally, the more precision I have determining the slope.
2. Study a value is 0.138 (rounded up)

\[Y_{10} \text{ SE}_b = \frac{1.38}{1.2} = -1.2 \]

\[t = \frac{b}{SE_b} = \frac{b}{1.2} = -1.2 \]

H_0: \beta = 0 vs. H_a: \beta \neq 0

Exercise: For two linear data set this

\[\text{ changes with } \]

\[\text{ the mean } \]

\[\text{ which is to be able to see.} \]

\[\text{ Their } \]

\[\text{ we have evidence enough} \]

\[\text{ to } \]

\[\text{ Ho: } \beta = 0 \]

\[\text{ P-value: } \text{Ha: } \beta \neq 0 \]

\[\text{ i.e. } \]

\[\text{ Calculating the } \]

\[\text{ SE}_b \]

\[\frac{\text{ SE}_b}{b} = \frac{1.2}{1.2} = 1.0 \]

\[\text{ Statistic becomes } \]

\[\text{ The test } \]

\[\text{ N. I. E. } \text{ Ho: } \beta = 0 \text{ The test } \]

\[\text{ that } \text{ is no effect or influence only } \]

\[\text{ To mean } \]

\[\text{ i.e. because } \text{ doesn't change with } \]

\[\text{ if } \beta = 0 \text{ then } \text{ no change with } \]

\[\text{ that } \]

\[\text{ REA and } \text{ are common. } \]

\[\text{ Testing and } \text{ SLR} \]

\[\text{ using } \frac{\text{ SE}_b}{\beta} \]

\[\text{ And I can test } \text{ Ho: } \beta = 0 \text{ with } \text{ if } n = 2 \]

\[\text{ using } \frac{\text{ SE}_b}{\beta} = \frac{b}{1.2} = -1.2 \]

\[\text{ I can test } \text{ Ho: } \beta = 0 \text{ if } \text{ or } \]
There is a 2nd method of testing $H_0: \beta_1 = 0$ (that for SLR turns out to be equivalent to t testing) and is built on the sums of squares we cooked up when defining R^2 - computations for this are usually organized in an ANOVA table (or Analysis of Variance table). The particular ANOVA table for SLR is:

\[
\begin{array}{c|c|c|c|c}
\text{Source} & \text{SS} & \text{df} & \text{MS} & \frac{F}{F_{\alpha}} = F \\
\hline
\text{Regression} & \text{SSR} & 1 & \text{MSR} & \text{SSR/MSR} = F \\
\text{Error} & \text{SSE} & n-2 & \text{MSE} & \text{SSE/MSE} = F \\
\hline
\text{Total} & \text{SSTot} & n-1 & & \\
\end{array}
\]

Exempyle Real Estate (test $H_0: \beta_1 = 0$ using "ANOVA table")

\[
\begin{array}{c|c|c|c|c}
\text{Source} & \text{SS} & \text{df} & \text{MS} & F \text{ ratio} \\
\hline
\text{Regression (size)} & 727.85 & 1 & 727.85 & 58.43 \\
\text{Error} & 827.50 & 8 & 124.43 & X \\
\hline
\text{Total} & 827.50 & n-1 & & \\
\end{array}
\]

Intuitively, it's reasonable to say that large observed F will count as evidence against $H_0: \beta_1 = 0$ in favor of $H_a: \beta_1 \neq 0$ i.e. X is important in describing y ... What is "large"?

We need to know a new probability fact and need to introduce a new set of distributions -

\[
F = \frac{\text{MSS}/\text{df}}{\text{MSE}}
\]
These look like:

See Tables beginning on T-12 for upper % pts. For this application we want numerator d.f. = 1

denominator d.f. = n - 2.

We therefore have evidence that size is an important predictor of home price.

It looks like we have 2 different ways of testing $H_0: \beta = 0$ (t-test
and F test) — but as it turns out

$\left(\frac{\text{value of } T}{\text{stat for } H_0: \beta = 0} \right)^2 = \frac{\text{value of } F \text{ statistic for } H_0: \beta = 0}{F_{1, n-2}}$

Also, values in 1st column of F table are squares of values in t table.

Examples: Real Estate

Use F dist with 1, 8 d.f.

so we see that the observed F is way beyond the upper .001 pt of this dist

$\text{F}_{1, 8}$

50.43

p-value = very small

For example

$\left(\frac{\text{upptl 5%}}{\text{pt of t}_8} \right)^2 = 3.46 = \text{upper 1% pt of } F_{1, 8}$

$(1.86)^2$

So why introduce both tests? Answer: in SLR case they are the same, but do different jobs in MLR

Exercise: Take the "by hand" data, Make an ANOVA table and compute F
ANOVA Table

<table>
<thead>
<tr>
<th>Source</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regression</td>
<td>14.4</td>
<td>1</td>
<td>14.4</td>
<td>27.0</td>
</tr>
<tr>
<td>Error</td>
<td>1.6</td>
<td>3</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>16</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: $T^2 = \left(\frac{1.2}{\frac{173}{110}} \right)^2 = 27.0$

In those cases where I do wish to do inference for β_0, I simply use my formula for the mean value of y

$\hat{y}_x = \beta_0 + \beta_1 x$

with the choice $x = 0$ -- so, for example,

$SE_{\beta_0} = \sqrt{\frac{SE_{\beta_0}^2}{n}}$ where I use $x = 0$

$= \sqrt{\frac{1}{n} + \frac{(0-\bar{x})^2}{\sum(x-\bar{x})^2}}$

A bit of house cleaning regarding SLR -- it's not usually of interest to make inferences for β_0.

y

Because β_0 is the y-value for $x=0$ and that's typically an extrapolation.

Multiple Linear Regression Ch II

Real problems usually have more than 1 predictor variable:

x_1, x_2, \ldots, x_k > use all to predict/explain y

Generalize from

SLR $y = \beta_0 + \beta_1 x + \epsilon$

to

MLR $y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \epsilon$

and end up doing everyting from SLR plus more....
Example Real Estate

\[y = \text{price} \]
\[x_1 = \text{size} \]
\[x_2 = \text{condition (10 = best)} \]

and we'll try to model/explain price
\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \epsilon \]

Fitted equation
\[\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + \ldots + b_k x_k \]

I choose \(b_0, b_1, b_2, \ldots, b_k \) to minimize
\[\sum (y - \hat{y})^2 \]

This a calculus problem that has a solution that can conveniently be written only using matrices - we'll use JMP and trust that SAS knows how to do least squares

NOTICE: SLR formulas for coefficients do NOT work here.

Conceptually here's a \(k=2 \) picture

\[\hat{y} = 9.78 + 1.87 x_1 + 1.28 x_2 \]

Not the same as for SLR

1.87 \(\rightarrow \) \$18.70/ft\(^2\) increase in price holding condition fixed

1.28 \(\rightarrow \) \$1,280/condition \# increase holding size fixed
How to measure the "goodness" of an equation fit to the data? Use R^2.

R^2 is interpreted as a "fraction of raw variability in response (y) accounted for by x_1, x_2, \ldots, x_k".

Example: Real Estate

$y = \text{price}$ $x_1 = \text{size}$ $x_2 = \text{condition}$

SLR (on size) $R^2 = .88$

MLR (on size + condition) $R^2 = .99$

Adding "condition" improves my ability to explain/predict price.

BTW SLR (on condition) $R^2 = .14$.

Use $R^2 = \frac{SSR}{SS_{Tot}}$ as before $\sum(y - \bar{y})^2$

As in SLR, I can make up data vectors into $\hat{y} = b_0 + b_1 x_1 + \ldots + b_k x_k$,

$$\text{SSE} = \sum (y - \hat{y})^2 \quad \text{I'll then define}\quad SSR = \text{Tot-SSE}$$

(Where the \hat{y}'s? I have to plug data vectors into $\hat{y} = b_0 + b_1 x_1 + \ldots + b_k x_k$).

Note: $.99 \neq .88 + .14$

BTW R^2 is a squared correlation between y and \hat{y}

Example: "by hand" fake data

Now with an x_2 in addition to x_1.)

From JMP

$\hat{y} = .8 - 1.9 x_1 + 2 x_2$

Find: \hat{y} values, SSE, R^2
\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \epsilon \]

Picture: \((k = 2)\)

In symbols:

- **To estimate \(\beta \)'s I use \(b \)'s**
- **Least squares coefficients (from JMP)**

Supplementary Notes:

- **Simple - Multiple Linear Regression (MLR)**
- **Inference in MLR**
- **To do this we need a model... the (normal) multiple linear regression model**
- **In Words:** The mean of \(y \) depends linearly on \(x_1, x_2, \ldots, x_k \) and for fixed \(x_1, x_2, \ldots, x_k \), \(y \)'s are normal with a std dev that doesn't depend on \(x \)'s

Recall: SSTot = 16 so

\[\text{SSE} = 16 - 4 = 12.6 \]

In symbols:

\[y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_k x_k + \epsilon \]

Normal, mean 0, std dev \(\sigma \), variable

To estimate \(\beta \)'s I use \(b \)'s

Least squares coefficients (from JMP)

Supplementary Notes:

- **To estimate \(\beta \)'s I use **
- **Least squares coefficients (from JMP)**

Supplementary Notes:

- **To estimate \(\beta \)'s I use**
- **Least squares coefficients (from JMP)**

\[s_{\text{MLR}} = \sqrt{\frac{\text{SSE}}{n - k - 1}} \]

Supplementary Notes:

- **I will soon drop this**

Supplementary Notes:

- **I will soon drop this**
Example: Real Estate MLR

handout: $s = 1.08 \quad (+1000$)

"Root mean square error" in JMP

This is my estimated standard deviation of
price for any fixed combination of
size (x_1) and condition (x_2)

\[\frac{1.08}{\text{MLR}} \leq \frac{3.53}{\text{SLR}} \]

This makes sense

(there are no simple formulas for
SE_b_i) (do not try to carry over SLR
formulas)

Example: Real Estate

95% confidence limits for r

\[(1.08 \frac{7}{16.01}, 1.08 \frac{7}{1.08}) \]

upper 2.5% pt of X^2 with 7 df.

lower 2.5% pt of X^2 with 7 df.

Confidence Intervals:

For r: We can here use X^2 tables
and formula

\[(s_{\text{MLR}} \frac{n-k-1}{\chi^2}, s_{\text{MLR}} \frac{n-k-1}{\chi^2}) \]

% pts of X^2 dfn with df $= n-k-1$

For β_i use JMP report and
df $= n-k-1$

$\hat{b}_i \pm t SE_{b_i}$

95% confidence limits for β_1, β_2:

For β_1:

\[b_1 \pm \pm 0.076 \]

1.87 \pm 2.365 (.076)

For β_2:

\[b_2 \pm \pm 0.14 \]

1.28 \pm 2.365 (.14)

(0.71, 2.19)
(b's are estimated increases in average y for a unit increase in xj all other x's held fixed)

Exercise For fake data, find s, make 95% confidence limits for \(\beta \) and use std errors on JMP report to make 95% confidence limits for \(\beta_1, \beta_2 \)

\[
s = \sqrt{\frac{SSE}{n-k-1}} = \sqrt{\frac{4}{5-2-1}} = \sqrt{2}
\]

\[
= .4472
\]

Confidence Limits for \(\hat{\beta} \mid x_1, x_2, ..., x_k \)

\[
\uparrow \pm t \left(\text{SE}_{\hat{\beta}} \right)
\]

has to come from JMP report - changes with \(x \)'s

Prediction Limits for \(y \) now for a given set of predictors \(x_1, x_2, ..., x_k \)

\[
\uparrow \pm t \left(\text{SE}_y \right)
\]

\[
\text{SE}_y = \sqrt{s^2 + (\text{SE}_{\hat{\beta}})^2}
\]

95% confidence limits use
d.f. = 5-2-1 = 2

\[
\left(s\sqrt{\frac{2}{u}}, s\sqrt{\frac{2}{l}} \right)
\]

\[
\left(.4472\sqrt{\frac{2}{7.373}}, .4472\sqrt{\frac{2}{0.816}} \right)
\]

For \(\beta_1 \):
\[
-1.8 \pm 4.303(1.283)
\]

upper 2.5% pt 1.22
lower 2.5% pt 1.22

For \(\beta_2 \):
\[
\hat{\beta}_2 = 2 \pm 4.303 \sqrt{0.816} (3.51)
\]