Confidence Intervals are data-based intervals meant to bracket some unknown population or model parameter that carry a probability-based reliability/confidence figure.

Basic idea used: sampling dsns for various that involve parameters of interest can lead to intervals for those parameters — e.g. the normal dsn for \bar{x} leads to a CI for μ.

95% of samples will produce \bar{x}’s so that:

$$(\bar{x} - 2\frac{\sigma}{\sqrt{n}}, \bar{x} + 2\frac{\sigma}{\sqrt{n}})$$

lands on top of μ.

Call $\bar{x} \pm 2\frac{\sigma}{\sqrt{n}}$ 95% confidence limits for μ.

(These limits involve the typically unknown σ — typically useless in practice.)
Example: Suppose I'm interested in the average 2BR apartment rent in Ames. Perhaps historical information suggests that \(\mu = 80 \). If today a sample of \(n=25 \) units gives \(\bar{x} = 688.20 \) at 95% C.I. for \(\mu \), is what? Use:

\[
\bar{x} \pm Z \frac{\sigma}{\sqrt{n}} = 688.2 \pm 2 \frac{80}{\sqrt{25}} = 688.2 \pm 16
\]

Interval: (650.2, 726.2)

Demonstration Brown Bag:

- Approximately normal, \(\sigma = 1.715 \)
- Make some 80% C.I.'s for \(\mu \):

\[
\bar{x} \pm 1.282 \frac{1.715}{\sqrt{n}} = .58
\]

Where \(Z \) is chosen so that

\[
P(-Z < \text{normal} < Z) = \text{desired reliability/confidence}
\]

<table>
<thead>
<tr>
<th>Confidence</th>
<th>(Z)</th>
</tr>
</thead>
<tbody>
<tr>
<td>55%</td>
<td>1.56</td>
</tr>
<tr>
<td>90%</td>
<td>1.55</td>
</tr>
<tr>
<td>95%</td>
<td>1.65</td>
</tr>
<tr>
<td>99%</td>
<td>2.33</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample #</th>
<th>Values</th>
<th>(Z)</th>
<th>Interval Work?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5,6,7</td>
<td>5.8</td>
<td>5.8 ± .98</td>
</tr>
<tr>
<td>2</td>
<td>3,4,5</td>
<td>4.2</td>
<td>4.2 ± .98</td>
</tr>
<tr>
<td>3</td>
<td>5,5,5,2,7</td>
<td>4.8</td>
<td>4.8 ± .98</td>
</tr>
<tr>
<td>4</td>
<td>1,2,3,4,5</td>
<td>4.6</td>
<td>4.6 ± .98</td>
</tr>
<tr>
<td>5</td>
<td>4,6,2,8,9</td>
<td>5.8</td>
<td>5.8 ± .98</td>
</tr>
<tr>
<td>6</td>
<td>3,3,7,7,5</td>
<td>5.0</td>
<td>5.0 ± .98</td>
</tr>
</tbody>
</table>

\(\mu = 5 \) exactly

80% is a lifetime batting average...
Interpretation? The demonstration should help think about this...

To say — to — is a 90% CI for \(\mu \) is to say that in obtaining it I've used a method that works in about 90% of applications — whether it has or has not worked in my particular application is typically unknown — regardless. After plugging data into the formula, there is no probability left in the problem.

The quantity \(\frac{z}{\sqrt{n}} \) is called "the margin of error." Larger confidence requires larger \(z \); looser limits, larger "margin of error." Larger \(n \) produces tighter limits, smaller "margin of error."

It's possible to choose sample sizes to get desired margin of error (for estimating \(\mu \)) by solving

\[
\frac{z}{\sqrt{n}} = \text{desired margin}
\]

for \(n \)

Example: Ames average rent -
\[
\bar{x} = 800, \quad 95\% \text{ confidence, target margin of error} 25
\]
25 = 2.576 \frac{80}{\sqrt{n}}

25\sqrt{n} = 2.576(80)

\sqrt{n} = \frac{2.576(80)}{25}

n = 68

General formula (for the sample size n)

\[n = \left(\frac{Z}{\text{margin of error}} \right)^2 \]

The practical problem of prediction is that I don’t know μ.
(or usually σ) for population — I might think

\[\bar{x} \pm 1.96 \sigma \]

but somehow I have hedges for the fact that \(\bar{x} \) isn’t exactly μ.
The prediction interval idea is its answer to “how do I hedge for this incomplete knowledge?”

2nd type of Inference:

Prediction Intervals

object here is to bracket \(x_{\text{new}} \)
(not, e.g., to bracket μ)
notice that if I had complete information this would be a probability problem

Example: Brown bug has \(\mu = 5 \)
\(\sigma = 1.715 \) and is normal.
\(x_{\text{new}} \) has \(95\% \) chance of catching \(x_{\text{new}} \)

Here we use a 2nd sampling distribution for the population.
(additional \(x_{\text{new}} \) — sample much based on \(n \))

If the population is normal, I can tell you about the sampling distribution.
Example: Ames Apartment rents

$\sigma = 80 \quad n = 29 \quad \bar{x} = 688.20$

make a 95% prediction interval for one more rental

$688.20 \pm (1.96)(80)\sqrt{1 + \frac{1}{29}}$

162.70

Note that (of course) those limits are wider than confidence limits for μ - they must account for $\sigma = 80$ in predicting an additional observation.

95% of all experiences give

$-1.960\sqrt{1 + \frac{1}{n}} < x_{\text{new}} - \bar{x} < 1.960\sqrt{1 + \frac{1}{n}}$

So I call

$\bar{x} \pm z_0 \sqrt{1 + \frac{1}{n}}$

prediction limits for x_{new}

Demonstration: Brown bag -

make some 80% P.I.'s using $n=5$

$\bar{x} \pm (z_0)\sqrt{1 + \frac{1}{5}} \quad z_0 = 1.715$

1.282

1.715

i.e. $\bar{x} \pm 2.41$

<table>
<thead>
<tr>
<th>Sample</th>
<th>Values</th>
<th>\bar{x}</th>
<th>x_{new}</th>
<th>Winner</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5, 5, 4, 3, 2</td>
<td>4.0</td>
<td>4</td>
<td>[1]</td>
</tr>
<tr>
<td>2</td>
<td>8, 4, 4, 3, 1</td>
<td>4.0</td>
<td>5</td>
<td>[1]</td>
</tr>
<tr>
<td>3</td>
<td>3, 3, 5, 5, 6</td>
<td>4.4</td>
<td>3</td>
<td>[1]</td>
</tr>
</tbody>
</table>

80% is a lifetime batting average
batting average refers to the whole business of (1) selecting the sample of n and (2) selecting one more, X, and seeing if the interval captures X

For the situation of problem 6.11

MMDOYS makes 95% prediction interval for one more statistics study time

3rd type of "standard inference" is **Significance Testing** (Hypothesis Testing)

Def. An alternative hypothesis is statement about the parameter that embodies the departures from the null hypothesis that are of interest (that we want to catch) —

$H_a: \text{parameter} \neq \#$

Example Filling 16oz pop bottles

$H_0: \mu = 16.0$

Basic Idea: Assessing the plausibility of a statement about a population or model parameter

Def. A null hypothesis is a statement about a parameter of the form

$H_0: \text{parameter} = \$

that represents a status quo or pre-data viewpoint

A consumer advocate might use

$H_a: \mu < 16.0$

A production supervisor might use

$H_a: \mu \neq 16.0$

Example Ames rent... suppose that last year's population mean was 660, and by standards of increase in CPI, 680 is "fair". This year a consumer advocate chucking a sample of apartments might use
$H_0: \mu = 680$
$H_a: \mu > 680$

How to assess the plausibility of H_0?

Defining a test statistic is the data summary to be used.

Defining a p-value is the probability that
the sampling distribution of test statistic T assigned to values
"more extreme" than the one observed

to get p-value, I need a normal area... I need a z-value

$z = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{688.20 - 680}{\frac{80}{\sqrt{25}}} = 0.55$

a table look-up gives .7088 as a
tabled area, so

p-value $= 1 - .7088 = .2912$

i.e. I've seen an outcome (\bar{x})
such that things this extreme
occur 29% of the time if H_0 is
true --- H_0 is not particularly implausible.

Example: Amos rent

T will be the test statistic
(we've seen $\bar{x} = 688.20$)

$T_{\bar{x}} = \frac{\bar{x} - \mu}{\frac{s}{\sqrt{n}}} = \frac{680}{15} = 4.53$

den of T is
if H_0 is true
is from H_0

"small" p-values \rightarrow "strong" evidence
against H_0
H_0 implausible

"big" p-values \rightarrow "weak" evidence
against H_0
H_0 not implausible

In our example we used

$H_0: \mu = \#$
$H_a: \mu > \#$

$\bar{x} = \alpha$ right tail
area for
p-value

20
I might as well admit that to get a p-value I'll have to compute a z-value and call the z-value the test statistic — i.e., the test statistic for \(H_0: \mu = \mu_0 \) will be

\[
 z = \frac{\bar{x} - \mu_0}{\sigma / \sqrt{n}}
\]

and using this we get 3 sets of hypotheses and pictures for p-values.

Before you don't hear what isn't true — that is, statistical significance = practical importance

you have enough data to see that \(H_0 \) is wrong

2) By Varnden's standards CIs are much more useful than tests

- They attempt to answer “The right” question ("what is the parameter value")

- Tests try to answer "the wrong" question ("is parameter = ?")

<table>
<thead>
<tr>
<th>(H_0): (\mu = \mu_0)</th>
<th>(H_a: \mu > \mu_0)</th>
<th>(H_a: \mu < \mu_0)</th>
<th>(H_a: \mu \neq \mu_0)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments/Philosophy/Caveat (Rant)

1. Common terminology is p-value < .05 \(\rightarrow \) statistically significant

2. p-value < .01 \(\rightarrow \) highly statistically significant

Besides CIs carry significance testing information any way — e.g., if a 95% CI for \(\mu \) is

\((5.3, 7.2) \)

p-value for testing \(H_0: \mu = 8 \)

\(H_a: \mu \neq 8 \)

will be smaller than .01 (1 -.99)

3. A p-value is not a "probability that \(H_0 \) is true" (nor is it a "probability \(H_0 \) is false") — it is a measure of "implausibility"
Problem 6.11

\[n = 25, \; \bar{x} = 110, \; \sigma = 40 \]

55% confidence limits for \(\mu \)

\[\bar{x} \pm 1.96 \frac{\sigma}{\sqrt{n}} \]

\[110 \pm 1.96 \frac{40}{\sqrt{25}} = 16.68 \]

This calls this "the margin of error."

Problem 6.11 Revisited

95% prediction limits for \(x \) new

\[\bar{x} \pm 1.96 \sqrt{\frac{\sigma^2}{n} + \frac{1}{n}} \]

\[110 \pm 1.96 (40) \left(1 + \frac{1}{25} \right) = 75.95 \]

As far as I can tell the answer to problem 1.9 is wrong. I get

\[\frac{475 - 250}{\sqrt{2}} = 12.82 \]

\[\sqrt{\frac{475 - 250}{12.82}} = 175.5 \]

I presume Duckworth needs 1.96 instead of 1.282.

Problem 6.54a) page 402

\[H_0: \mu = 115 \]

\[H_a: \mu > 115 \]

\[z = \frac{\bar{x} - 115}{\sigma/\sqrt{n}} = \frac{135.2 - 115}{30/\sqrt{20}} > 3.01 \]

P-value is right tail area = small

BTW I would phrase this as

"Assess the strength of the evidence that the older students have a mean above 115."
Basic Probability Fact: when sampling from a normal distribution (normal universe/population)

\[t = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \]

was tabulated \(t \) den with \(\nu \) d.f.

\(\bar{X} \) is the sample mean.

For 1 sample, note application to paired data

For 2 samples, Bob's preferred/default method

Basic Probability Fact: when sampling from a normal distribution (normal universe/population)

\[t = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \]

was tabulated \(t \) den with \(\nu = n - 1 \) - see The inside back cover of text and Figure 7.1 page 434 of text

What we did Tuesday was build mostly on the fact

\[z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \]

This propagates through the formulas.

It is (at least approximately) standard normal.

\[z = \frac{\bar{X} - \mu}{\frac{\sigma}{\sqrt{n}}} \]

It would be nice if we could start with something that doesn't involve \(z \), perhaps I can replace \(z \) with \(t \) and still do something.

\[t = \frac{\bar{X} - \mu}{\frac{S}{\sqrt{n}}} \]

\(t \) is den with \(\nu = n - 1 \) - see The inside back cover of text and Figure 7.1 page 434 of text.

\[t_0 \]

The \(t \) den are bell-shaped, centered at 0, and "flatter" than normal - but for large degrees of freedom they are nearly standard normal.

\[t_0 \]

\[\mu \]
Note that the t-table is set up differently than the std normal table - the information available for t-dists. is not as detailed as for std. normal.

Right tail area on margin

In the body of table enter the table on row corresponding to "degrees of freedom".

From the t-table

$P(-2.056 < t_{26} < 2.056) = .95$

Example

$n=27$ no load mutual funds 1999 rates of return ($\overline{x} = 13.3\%$, $s = 4.1\%$)

Suppose 1 rates of return for such funds in 1999 were approximately normal.

2 This is based on a random sample of such funds.

Based this we're going to do inference.

So for 95% of all samples:

$-2.056 < \frac{\overline{x} - \mu}{s/\sqrt{n}} < 2.056$

is the same as

$\overline{x} - 2.056 \frac{s}{\sqrt{27}} < \mu < \overline{x} + 2.056 \frac{s}{\sqrt{27}}$

i.e. for $n=27$

\[\overline{x} \pm 2.056 \frac{s}{\sqrt{27}} \]

are 95% confidence limits for μ.

23
The text calls an empirical approximation to

\[\frac{S}{\sqrt{n}} \]

The "estimated standard error" of the mean

Example:

\[\frac{0.07}{\sqrt{127}} = 1.6 \]

95% confidence limits for mean rate of return

\[\bar{X} \pm 1.96 \frac{S}{\sqrt{n}} \]

\[\bar{X} \pm 1.96 \frac{0.07}{\sqrt{127}} = 1.6 \]

Do problem 7.31 page 456

- Make both 95% and 95% intervals

Note that 80% is the lifetime guarantee. Note length of interval agrees with the sample.

Demonstration: Brown Bag, n=3

Use \[\bar{X} \pm 1.65 \frac{S}{\sqrt{n}} \]

\[\bar{X} \pm 1.65 \frac{0.07}{\sqrt{3}} \]

\[\bar{X} = 2, 1.24, 1.54, 1.69 \]

\[\frac{S}{\sqrt{n}} = 0.24, 0.49, 0.4, 1.48, 1.02 \]

\[2, 58.46, 5.0, 2.24, 1.54 \]

\[2, 2.49, 3.9, 4.4, 2.30, 1.58, 1.69 \]
For large, the formula turns into
\[\bar{x} \pm \frac{s}{\sqrt{n}} \]
and some authors call this the "large sample C.I. formula"

Fixing the problem with Tuesday's PI's ... I can do this for normal populations - I do need a fairly bell-shaped universe here ... "robustness" doesn't hold

Example: no load mutual funds... 1999 rates of return - make a 95% PI for a single additional fund
\[n = 27, \bar{x} = 13.3, s = 4.1 \]
assuming the population is normal use
\[\bar{x} \pm 1.96 \frac{s}{\sqrt{n}} \]

13.3 ± 1.96 \frac{4.1}{\sqrt{27}} = 2.056

\[13.3 \pm 0.8 \] (or much larger from estimating N)

(I'd only apply this if I "know" the population is normal or if I check a histogram of the sample and see a bell shape)

Basic Probability Fact: when sampling a normal universe
\[\frac{x_{\text{new}} - \bar{x}}{s \sqrt{\frac{1}{n} + \frac{1}{N}}} \]
and this leads to prediction limits
\[\bar{x} \pm s \sqrt{\frac{1}{n} + \frac{1}{N}} \]

Demonstration: Brown Bag
make an 80% PI for \(x_{\text{new}} \) based on a sample of size 5
3, 4, 5, 6, 7 \(\bar{x} = 5.0, s = 1.58 \)
prediction limits are
\[5.0 \pm 1.53 \frac{1.58}{\sqrt{1 + \frac{1}{5}}} \]
\[2.80 \]

\[x_{\text{new}} = 5 \] - ... a winner yet again
The 80% guarantee is a lifetime batting average guarantee for the whole business of selecting 5, making an interval and selecting 1 more for one more corn price.

Significance testing for μ without the known σ assumption goes just as you should expect... replace S with S and z with t and operate as before.

H₀: μ = 15
Hₐ: μ < 15

\[t = \frac{\bar{x} - \mu}{s / \sqrt{n}} = \frac{13.3 - 15}{4.1 / \sqrt{27}} = -2.15 \]

p-value < 0.05

To test \(H₀: μ = \# \) use

\[t = \frac{\bar{x} - \#}{s / \sqrt{n}} \]

and the t table (with df = n-1) to get p-values.

Example: No load mutual funds 1995
"Was the mean rate of return in 1995 clearly/definitely below 15%?"

For scenario of 7.31 page 456
- If the price is electably clearly below 2.10 policy makers want to intervene
- "Assess the strength of sample evidence that mean price is below 2.10"

(What follows is the alternative hypothesis)

An important application of the (one-sample) t methods of Section 7.1 is to
"paired data" -
Paired data arise when I have "before and after" or "with and without treatment" or "left side and right side" etc. observations on a single sample of objects/items.

A standard method of analysis is to take differences

\[x - y = d \]

and to do inference for \(M_d \)

This possibility is fundamentally different from the content of Section 7.2 "2 sample" Methods.

The text's favorite/default method uses the variable

\[
\frac{\bar{x}_1 - \bar{x}_2 - (M_1 - M_2)}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}
\]

This is not \(t \)-distributed (even if populations are normal) but if you act as if it were (with d.f. the smaller of \(n_1 - 1 \) and \(n_2 - 1 \)) you get conservative inferences.
treats that variable as t and leads to confidence limits for $(M_1 - M_2)$ of the form

$$\bar{x}_1 - \bar{x}_2 \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$$

df = smaller of $n_1 - 1$ and $n_2 - 1$

demonstration

80% confidence limits for $M_{blue} - M_{brown}$

\[\bar{x}_{men} = 121.3, \quad s_{men} = 32.5 \]

my 80% limits are \[4.25 \pm 3.19 \]

(since I actually know that \[M_{blue} - M_{brown} = 10 - 5 = 5 \], I know that yet again I'm a winner)

<table>
<thead>
<tr>
<th>Sample 4 from Brown, 5 from Blue</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brown: 5, 5, 3, 6 [\bar{x}{brown} = 4.75] [s{brown} = 1.26]</td>
</tr>
</tbody>
</table>

\[\bar{x}_{blue} - \bar{x}_{brown} \pm t_{\alpha/2} \sqrt{\frac{s_{blue}^2}{n_{blue}} + \frac{s_{brown}^2}{n_{brown}}} \]

\[4.25 \leq 0 - 4.75 \pm 1.638 \sqrt{\frac{4.12^2}{5} + \frac{1.26^2}{5}} \]

\[3.13 \]

The significance testing version of this is to test

\[H_0: M_1 - M_2 = 0 \quad H_1: M_1 - M_2 \neq 0 \]

with

\[t = \frac{\bar{x}_1 - \bar{x}_2 - \#}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}} \]

and using t table with df = \[\text{smaller of } n_1 - 1 \text{ and } n_2 - 1 \]
An alternative to the book’s preferred method is based on an assumption that the 2 populations being compared have the same standard deviation ($\sigma_1 = \sigma_2 = \sigma$) (in practice this works fine if they aren’t radically different).

Example: Famous 60’s marketing study compared ages of purchasers and non-purchasers of Crest toothpaste.

<table>
<thead>
<tr>
<th></th>
<th>n_1</th>
<th>n_2</th>
<th>\bar{y}_1</th>
<th>\bar{y}_2</th>
<th>s_1</th>
<th>s_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Non-Purchasers</td>
<td>20</td>
<td>20</td>
<td>47.2</td>
<td>39.8</td>
<td>13.62</td>
<td>10.04</td>
</tr>
<tr>
<td>Purchasers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These aren’t terribly different and so perhaps a $\sigma_1 = \sigma_2 = \sigma$ assumption isn’t bad.

If I’m assuming $\sigma_1 = \sigma_2$, it makes sense to use a value compromising between s_1 and s_2 as an estimate of σ (a “pooled” estimate of σ) is:

$$Spooled = \sqrt{\frac{(n_1-1)s_1^2 + (n_2-1)s_2^2}{n_1+n_2-2}}$$

Example: Crest

$Spooled = \sqrt{\frac{(20-1)(13.62)^2 + (20-1)(10.04)^2}{(20-1) + (20-1)}}$

$= 11.96$ years

Basic variable used is then:

$$\frac{\bar{x}_1 - \bar{x}_2 - (\bar{y}_1 - \bar{y}_2)}{Spooled \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}, \text{ has exactly a t-distribution with}$$

$$df = (n_1 - 1) + (n_2 - 1)$$
This reasoning leads to confidence limits for $\mu_1 - \mu_2$

$$\bar{x}_1 - \bar{x}_2 \pm t \frac{s}{\sqrt{n_1 + n_2}}$$

d.f. = $(n_1 - 1) + (n_2 - 1)$

and to testing $H_0: \mu_1 - \mu_2 = \pm$ using

$$t = \frac{\bar{x}_1 - \bar{x}_2 - \pm}{s \sqrt{n_1 + n_2}}$$

and a t table with d.f. = $(n_1 - 1) + (n_2 - 1)$

Example: Crest Make 95% confidence limits for the difference in mean ages.

$$\bar{x}_{\text{non}} - \bar{x}_{\text{crest}} \pm t \frac{s_{\text{non}}}{\sqrt{n_{\text{non}}} + \sqrt{n_{\text{crest}}}}$$

47.2 - 39.8 ± 2.09 (11.96 $\sqrt{20} + \sqrt{20}$)

7.4

Upper 2.5% point of t_{38} distribution: 2.024

7.66
Problem 7.31 page 456 95% and 99% intervals

2.08

2.080 for 95%
2.831 for 99%

Prob 7.31 (testing version)

\(H_0: \mu = 2.10 \)
\(H_a: \mu < 2.10 \)

\(t = \frac{\bar{x} - 2.10}{\frac{s}{\sqrt{n}}} = \frac{2.08 - 2.10}{.176} = -.11 \)

Not much evidence against \(H_0 \) in favor of mean price below 2.10

7.31 95% and 99% PI's for one more price

\[\frac{.176}{\sqrt{22}} \]

\[s = .176 \sqrt{22} = .8255 \]

\[\bar{x} \pm t \cdot s \sqrt{\frac{1}{n} + \frac{1}{22}} \]

2.08

\[.8255 \]

2.080 for 95% confidence
2.831 for 99% confidence

7.79 Default method 90% C.I for difference in means

\[\bar{x}_1 - \bar{x}_2 \pm t \cdot \sqrt{\frac{s^2_1}{n_1} + \frac{s^2_2}{n_2}} \]

\[\frac{14.1 - 12.3}{1.740} \sqrt{\frac{(26.4)^2}{18} + \frac{(32.9)^2}{20}} \]

15.8

16.7