Tonite:

Introduction to inference (making quantitative data-based conclusions)

1. confidence intervals (not in Ch 6 Moore)
2. significance testing (Ch 6)
3. prediction intervals (not in Ch 6 Moore)

in The (irrealistish) situation where "I is known"

Sampling dist of \(\bar{X} \) is approximately normal (either because I'm willing to say the population is normal or because n is large)

\[\frac{\bar{X} - \mu}{s / \sqrt{n}} \]

\[\text{dsn of } \bar{X} \]

\[M_{\bar{X}} = \mu \]

Confidence Intervals - data-based intervals intended to bracket an unknown population parameter that carry a probability-based reliability (confidence) figure

Basic idea: sampling dists for variables involving parameters can sometimes lead to interval formulas for those parameters

Example: Suppose that surveys have consistently shown that 2 BR apartment rents in Ames IA have std dev $80 at any point in time —

Suppose that this month a sample of \(n = 25 \) apartments will be taken

\[\bar{X} = \text{sample average rent} \]

\[\frac{\bar{X} - \mu}{s / \sqrt{n}} \]

\[m = 2 \]
Thus is roughly a 95% chance of getting an \bar{x} that is within $2 \frac{80}{125}$ of μ.

An interval from $\bar{x} - 2 \frac{80}{125}$ up to $\bar{x} + 2 \frac{80}{125}$ has about a 95% chance of catching μ - so

$(\bar{x} - 2 \frac{80}{125}, \bar{x} + 2 \frac{80}{125})$ is called a 95% CI for μ.

General version is:

$$\bar{x} \pm z \frac{t}{\sqrt{n}}$$

are confidence limits for μ with confidence level $p(-z < \text{a standard normal variable} < z)$.

<table>
<thead>
<tr>
<th>confidence level</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>80%</td>
<td>1.282</td>
</tr>
<tr>
<td>90%</td>
<td>1.645</td>
</tr>
<tr>
<td>95%</td>
<td>1.96</td>
</tr>
<tr>
<td>99%</td>
<td>2.576</td>
</tr>
</tbody>
</table>

Example: Vardeman's red bag

$r = 1.715$

make some 80% CI's for μ based on $n = 5$

$$\frac{\bar{x} - z}{\sqrt{n}} = 1.282 \frac{1.715}{\sqrt{5}}$$

$= 38$
<table>
<thead>
<tr>
<th>Sample</th>
<th>\overline{x}</th>
<th>Success?</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,7,7,8,4</td>
<td>6.4</td>
<td>no 🙆</td>
</tr>
<tr>
<td>3,3,3,9,4</td>
<td>3.4</td>
<td>no 🙆</td>
</tr>
<tr>
<td>5,5,6,6,1</td>
<td>4.6</td>
<td>yes 😊</td>
</tr>
<tr>
<td>6,5,4,3,7</td>
<td>5.0</td>
<td>yes 😊</td>
</tr>
<tr>
<td>6,6,6,7,7</td>
<td>6.4</td>
<td>no 🙆</td>
</tr>
</tbody>
</table>

etc.

and of many attempts, about 80% will be successes

confidence level = lifetime batting average
Moore use the terminology

$$\frac{F}{\sqrt{n}} = \text{"margin of error"}$$

large confidence \leftrightarrow large margin of error
it is possible to plan for a given margin and confidence level by choosing an appropriate n

To say — to — is a 90% CI for μ is to say that in obtaining it I've used a method that works in about 90% of applications — whether or not it has worked in this particular application I don't know — further, there is no way to make a probability statement about this particular realized interval

Do problem 6.6 page 308 of Moore

Example. Ames rent survey - suppose I want 99% and ± 2.5 margin of error in estimating μ — $n =$?

$$\bar{x} = 2.576$$

$$25 = \text{margin of error} = \frac{\bar{x}}{\sqrt{n}} = 2.576 \frac{80}{\sqrt{n}}$$

$$\sqrt{n} = 2.576 \frac{80}{25}$$

$$n = (2.576 \frac{80}{25})^2 = 68$$
General Formula

\[n = \left(\frac{z \cdot \text{margin of error}}{\text{sample mean}} \right)^2 \]

2nd type of inference: Prediction for a simple additional value - using a normal model - normal no good, neither is the following development

So there is about a 95% chance that \(z_{\text{new}} - \bar{z} \) is between

\[-2\sigma \sqrt{1 + \frac{1}{n}} \quad \text{and} \quad 2\sigma \sqrt{1 + \frac{1}{n}}\]

This is equivalent to

\[\bar{z} - 2\sigma \sqrt{1 + \frac{1}{n}} < z_{\text{new}} < \bar{z} + 2\sigma \sqrt{1 + \frac{1}{n}}\]

which suggests that I call

\[\bar{z} \pm 2\sigma \sqrt{1 + \frac{1}{n}} \]

95% prediction limits for \(z_{\text{new}} \)

\[z = \text{sample mean of n observations} \]

\[z_{\text{new}} = \text{simple additional observation from the same normal dsn} \]

Fact: The sampling dsn of \(z_{\text{new}} - \bar{z} \)

is normal with mean 0 and std dev \(\frac{1}{\sqrt{1 + \frac{1}{n}}} \)

\[\frac{1}{\sqrt{1 + \frac{1}{n}}} \]

In general, the limits are

\[\bar{z} \pm z \cdot \sqrt{1 + \frac{1}{n}} \]

Example: Ames rents

make a 95% prediction interval for a single additional apartment rent

\[n = 29 \quad \sigma = 80 \quad \bar{z} = 688.20 \]

\[688.20 \pm 1.96(80) \sqrt{1 + \frac{1}{29}} \]

\[688.20 \pm 16.3 \]

much larger than \(\pm 29.7 \) from before.
Null Hypothesis:
A null hypothesis is a statement about a parameter of a population. A model parameter is the parameter being sampled.

Significance Testing:
Significance testing is a method of assessing the probability of a statement being true.

Basic Types of Inference:
- **Pre-Data Status:** The alternative hypothesis is a statement that embodies those departures from the null hypothesis that one wishes to detect. This takes one of two forms:
 - $H_a: \text{parameter } \neq c$
 - $H_a: \text{parameter } > c$

Statistical Process:
- **A Type I Error:**MSC 2/14/16
- **A Type II Error:**
- **Critical Value:**
- **P-value:**

Sample Size:
1. **Sample Size Formula:** $n = \frac{Z^2 \sigma^2}{\theta^2}$
2. **Type of Test:** Z-test
3. **Decision Rule:**
- **Level of Significance:** $\alpha = 0.05$
- **Critical Value:** $Z = 1.65$
- **Test Statistic:** $Z = \frac{\bar{X} - \mu}{\sigma/\sqrt{n}}$

Confidence Interval:
- **Confidence Level:** 95%
- **Margin of Error:** $E = Z(\frac{\sigma}{\sqrt{n}})$
- **Confidence Interval Formula:** $\bar{X} - E < \mu < \bar{X} + E$

Interpretation:
- To say that 95% of the p-values is to say that 95% of the p-values are < 0.05.

Example:
- **Red Sox PIs for 2007:**
 - $1.282 < 1.75$ (using $n = 5$)

Notes:
- θ: parameter (e.g., $n = 5$)
- $Z = 1.65$
- σ: standard deviation
- \bar{X}: sample mean
- μ: population mean
- E: margin of error
to assess the plausibility of H_a, we use a "test statistic" and compute a "p-value."

Def: The **test statistic** is the data summary used.

Def: The **p-value** is the probability that the sampling distribution of the test statistic assigns to things as extreme as the data in hand when H_0 is true.

$$z = \frac{688.20 - 680}{\frac{80}{\sqrt{123}}} = 5.5$$

$$P(Z > 5.5) = 1 - .7088 = .2912$$

Example: Amy's apartment rents -

Projecting based trends from last decade, we see that $\mu = 680$ - students claim this is too low. $\bar{x} = 688.20$...

How plausible is $\mu = 680$?

$H_0: \mu = 680$

$H_a: \mu > 680$

a sensible test statistic is \bar{x}

big p-value \iff H_0 is not implausible

small p-value \iff H_0 implausible

In this example, I used

$H_0: \mu =$

$H_a: \mu >$ as evidence against H_0

ultimately I turned \bar{x} into a z-score
- I could think of the test statistic as
 \[z = \frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \]

 Thinking in terms of \(z \)-scores. The \(z \) sets of hypotheses and ways to get
 \(p \)-values are:

 \[H_0: \mu = \# \quad H_0: \mu = \# \quad H_0: \mu = \# \]
 \[H_a: \mu > \# \quad H_a: \mu < \# \quad H_a: \mu \neq \# \]

 \(z^* = z \) score for data in hand

 \[\frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \]

 or Moore

 \(\frac{\bar{x} - \mu}{\sigma / \sqrt{n}} \)

 \(\bar{x} \)

 \(\sigma \)

 \(n \)

 Comments

 1. Sometimes people call

 \(p \)-value < .05 "statistically significant"

 \(p \)-value < .01 "highly statistically significant"

 be careful

 statistical significance \(\neq \) practical importance

 have enough data to see \(H_0 \) is wrong

 \(H_0 \) is far enough from right that I care

 \(\bar{x} \neq \# \)

 2. A \(p \)-value is not a "probability"

 The null hypothesis is right (or wrong)

 It's a measure of strength of evidence

 against \(H_0 \)

 3. Confidence Intervals

 a) are more informative than significance

 tests (they answer the right question)

 "What is \(\mu \)?" vs "Is \(\mu = \# \)?"

 b) carry testing information - if a 50%

 CI for \(\mu \) doesn't cover \(\# \) then \(p \)-value for

 testing \(H_0: \mu = \# \) vs \(H_a: \mu \neq \# \) is < .10

 18
The key fact in the Ch 6 introduction to inference was that Z is normal, i.e. that:

$$Z = \frac{\bar{X} - \mu}{\sigma}$$

is standard normal

Ch 6 methods are usually unusable since they involve t and that comes from t IC like methods that don't require σ as an input.

t dsns are bell-shaped dsns, centered at 0, that are somewhat flatter/more spread out than the standard normal dsn. t dsn with μ normal has a tabled $d.f. = n-1$.

Diezian Problem 35, page 58 gives 1999 annual rates of return on $n=27$ no load mutual funds -- ($\bar{X} = 13.3\%$ and $s = 4.1\%$) -- supposing that these $n=27$ can be treated as a random sample of all such funds (?????) and that annual rates of return for such funds in 1999 were approximately normal.

$$P(-2.056 < \frac{\bar{X} - \mu}{\frac{s}{\sqrt{n}}} < 2.056) = .95$$
i.e. 95% of sample produce

\[-2.056 < \frac{\bar{x} - \mu}{S/\sqrt{n}} < 2.056\]

equivalent to

\[-2.056 \frac{S}{\sqrt{27}} < \mu < \bar{x} + 2.056 \frac{S}{\sqrt{27}}\]

which suggests 95% limits for \(\mu\)

Example. No load mutual fund example

\(n=27\), \(\bar{x} = 13.3\), \(S = 4.1\)

95% confidence limits for \(\mu\)

\(\bar{x} \pm \frac{S}{\sqrt{n}}\)

\(13.3 \pm 2.056 \frac{4.1}{\sqrt{27}}\)

1.6

\(\bar{x} \pm 2.056 \frac{S}{\sqrt{27}}\)

which is a special case of

\(\bar{x} \pm \frac{2}{\sqrt{n}}\)

df = n-1

Note that here the "margin of error" changes "sample to sample" (since \(S\) varies)

Example. Red Bug - take some samples of size \(n=5\) and make 80% C.I.'s for \(\mu\) (know to be 5)

\(\bar{x} \pm \frac{S}{\sqrt{15}}\)

1.533

\(\bar{x} \pm 0.696\)
Problem 7.7 a) b) Page 374

Example: Predict (95%) return for 60% prediction limits

We have 12 measurements with a mean of 10.2 and a standard deviation of 2.5. We need to calculate the confidence interval for the mean.

Sample size: 12

\[\bar{x} = 10.2 \]

Standard deviation: 2.5

95% confidence level

\[t_{0.025, 11} = 2.201 \]

\[s = 2.5 \]

\[n = 12 \]

\[\alpha = 0.05 \]

\[t_{0.025, 11} = 2.201 \]

\[\text{CI} = \bar{x} \pm t_{0.025, 11} \frac{s}{\sqrt{n}} \]

\[10.2 \pm 2.201 \frac{2.5}{\sqrt{12}} \]

\[10.2 \pm 0.41 \]

\[9.79 < \mu < 10.61 \]

This interval is the predicted range for the mean.
Example: Didmen mutual fund data

Was the mean rate of return for no load mutual funds in 1999 clearly below 15%? Use a significance test

$H_0: \mu = 15$

$H_a: \mu < 15$

$t = \frac{\bar{x} - 15}{\frac{s}{\sqrt{n}}} = \frac{13.3 - 15}{\frac{4.1}{\sqrt{27}}} = -2.15$

p-value is between 0.025 and 0.01.

Remember that we had 95% confidence limits for μ of 13.3 ± 1.6
Matched Pairs application of one-sample t methods

\[\text{individual 1: } x_1, y_1 \]
\[\text{individual 2: } x_2, y_2 \]
\[\text{individual 3: } x_3, y_3 \]
\[\text{individual n: } x_n, y_n \]

It can make sense to simply reduce x and y to \(d = y - x \) and apply methods of 7.1 to d's.

The object is comparison of MA and MB based on the 2 samples.

Basic quantity used in 7.1 is

\[\frac{\bar{x}_A - \bar{x}_B - (M_A - M_B)}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} \]

Sadly this isn't exactly t distributed but treat it as if it was using conservative degree of freedom smaller sample size - 1 and use conservative t value.

\[M_A = 5 \]
\[M_B = 10 \]
\[t_A = 1.715 \]
\[t_B = 3.47 \]
\[n_A = 5 \quad n_B = 4 \]

\[3, 3, 3, 3, 7 \quad 2, 5, 15, 15 \]

\[\bar{x}_A = 4.9 \quad \bar{x}_B = 9.25 \]

\[s_A = 1.95 \quad s_B = 6.75 \]

\[\text{make a 95\% C.I. for } \mu_A - \mu_B \]

\[(4.4 - 9.25) \pm 2.353 \sqrt{\frac{(1.95)^2}{5} + \frac{(6.75)^2}{4}} \]

\[-4.85 \pm 8.20 \]

\[\text{a winner (truth is } -5 = \mu_A - \mu_B) \]

\[\frac{17.5 - 13.7}{3.8} \pm 1.660 \sqrt{\frac{(3.5)^2}{12} + \frac{(4.5)^2}{9}} \]

\[3.8 \pm 3.36 \]

\[\text{Significance Testing for } \mu_A - \mu_B ? \]

\[H_0: \mu_A - \mu_B = 0 \]

\[H_a: \mu_A - \mu_B < 0 \]

\[\text{Test statistic} \]

\[T = \frac{\bar{x}_A - \bar{x}_B - \mu}{\sqrt{\frac{s_A^2}{n_A} + \frac{s_B^2}{n_B}}} \]

\[= -1.39 \]

\[\text{Problem 7.32 c) } \]

\[\bar{x}_A = 17.5 \quad \bar{x}_B = 13.7 \]

\[s_A = 3.5 \quad s_B = 4.5 \]

\[n_A = 12 \quad n_B = 9 \]

\[\text{Example: Red + Striped bags} \]

\[\text{Do they have the same mean?} \]

\[H_0: \mu_A - \mu_B = 0 \]

\[H_a: \mu_A - \mu_B \neq 0 \]

\[T = \frac{4.4 - 9.25}{-1.39} \]

\[\text{p-values using} \]

\[d.f. = \text{smaller} \quad \text{sample size} - 1 \]
Problem 7.32 b)

\[T = \frac{17.5 - 13.7}{\sqrt{\frac{(3.9)^2}{12} + \frac{(4.5)^2}{5}}} = 2.10 \]

\[H_0: \mu_A - \mu_B = 0 \]
\[H_a: \mu_A - \mu_B > 0 \]

A = unlogged, B = logged

p-value here is between 2(0.10) and 2(0.05)

2(0.10) and 0.05

between 0.025 and 0.01