1. One hundred Iowa State students in a political science course were asked their political preference. The results of this survey are given in the table.

<table>
<thead>
<tr>
<th></th>
<th>Republican</th>
<th>Democrat</th>
<th>Independent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>22</td>
<td>20</td>
<td>8</td>
</tr>
<tr>
<td>Female</td>
<td>20</td>
<td>24</td>
<td>6</td>
</tr>
</tbody>
</table>

(a) [4] Find the probability that a student from this class is a Democrat.

\[
\frac{24}{100} = .24
\]

(b) [6] Find the probability that a female from this class is a Democrat.

\[
\frac{24}{50} = .48
\]

(c) [6] Find the probability that a student from this class is male or Republican

\[
\frac{22 + 20 + 8 + 20}{100} = .7
\]

(d) [6] Are political preference and gender independent? Justify your answer

No, they are not independent. For example,

\[
P[D | F] = .48 \quad \text{while} \quad P[D] = .44
\]

or

\[
P[F \text{ and } D] \neq P[F] \cdot P[D] = .5 \cdot .44 = .22
\]
2. Let \(X(\omega) \) denote the number of trucks owned by household, \(\omega \). The distribution of \(X \) is given by

\[
x_i = \text{number of trucks} \quad \begin{array}{c|c}
p_i = P(X(\omega) = x_i) \\
0 & .5 \\
1 & .4 \\
2 & .1 \\
\end{array}
\]

(a) [8] Find \(E(X) \) and \(Var(X) \).

\[
E(X) = 0(.5) + 1(.4) + 2(.1) = .6 \\
Var(X) = E(X^2) - (E(X))^2 = 0^2(.5) + 1^2(.4) + 2^2(.1) - (.6)^2 \\
= .8 - .36 = .44
\]

(b) [3] Assume that 100 households are sampled at random and let \(Y \) denote the number of households out of the 100 that have one truck. Find the distribution of \(Y \).

\(Y \) is binomial with \(n = 100 \) and \(p = .4 \)

(c) [4] Find \(E(Y) \) and \(Var(Y) \).

\[
E(Y) = np = 100(.4) = 40 \\
Var(Y) = np(1-p) = 100(.4)(.6) = 24
\]

(d) [6] Use the Binomial distribution to write an expression for \(P[36 \leq Y < 42] \).

\[
\sum_{y=36}^{41} \binom{100}{y} (.4)^y (.6)^{100-y}
\]

(e) [3] Justify the claim that \(Y \) is approximately normal.

\[
np(1-p) = 100(.4)(.6) = 24 > 10
\]
(f) Use the normal distribution to approximate \(P[36 < Y < 42] \).

\[
P[36 \leq Y < 42] = P \left[35.5 \leq Y \leq 41.5 \right] \\
= P \left[\frac{35.5 - 40}{\sqrt{24}} \leq \frac{Y - 40}{\sqrt{24}} \leq \frac{41.5 - 40}{\sqrt{24}} \right] \\
= P \left[-0.92 \leq Z \leq 0.31 \right] \\
= 0.6217 - 0.1788 \\
= 0.4429
\]

3. A certain jogger runs one hour per day and burns an average of 500 calories with a standard deviation of \(\sigma = 10 \). (Assume that calories burned follows a normal distribution.) Let \(X \) denote the calories burned by this jogger in a daily run.

(a) Find \(P[X > 505] \).

\[
P[X > 505] = P \left[\frac{X - 500}{10} > \frac{505 - 500}{10} \right] \\
= P[Z > 0.5] \\
= 1 - 0.6915 = 0.3085
\]

(b) Find \(P[|X - 500| < 10] \).

\[
P[-10 < X - 500 < 10] = P[490 < X < 510] \\
= P \left[\frac{-10}{10} < \frac{X - 500}{10} < \frac{10}{10} \right] \\
= P[-1 < Z < 1] \\
= 0.8413 - 0.1587 = 0.6826
\]

(c) Let \(X_7 \) denote the average number of calories burned per daily run over a 7 day week. Find \(P[X > 505] \).

\[
E X = \mu = 500 \\
\sigma X = \frac{\sigma}{\sqrt{n}} = \frac{10}{\sqrt{7}} = 3.8
\]

\[
P[X > 505] = P \left[\frac{X - 500}{10} > \frac{505 - 500}{10} \right] \\
= P[Z > 1.32] = 1 - 0.9066 \\
= 0.0934
\]
(d) [6] Find the 90th percentile for X_r.

4. The admissions director of a graduate program wants to know how well the Quantitative part of the Graduate Record Exam, x_1, and the undergraduate GPA, x_2, predict the student’s graduate school GPA, y. Data are collected on 51 graduate students and are analyzed in the attached output.

(a) [4] What is the mean of the response variable, y?

$$3.594118$$

(b) [4] What is the correlation between quantitative score and graduate GPA?

$$\sqrt{R^2} = \sqrt{.507382} = .712$$

(c) [6] If you wanted to predict a new student’s graduate GPA what equation would you use? Justify your answer.

I would use the 2-predictor equation, as its R^2 is substantially larger than those for the two 1-predictor equations.

$$\hat{y} = .262 + .4140(x_{1\text{GPA}}) + .00246(\text{quant})$$

(or use the equation only including x_1 since $(R^2$ is reasonable and the equation is simpler))

$$\hat{y} = x_1$$

$$\hat{y}$$

(d) [6] Using the whole model, what is the residual, $y_i - \hat{y}$, for the point (800, 3.65, 3.68).

$$y_i - \hat{y} = 3.68 - (\hat{y} = \hat{y})$$

$$= 3.68 - 3.74$$

$$= -.06$$