An Empirical likelihood Method in Mixture Models with Incomplete Classifications

Song Xi Chen and Jing Qin

Iowa State University and National Institute of Health

ABSTRACT. In studying the relationship between a binary variable and a covariate, it is very common that the value of the binary variable is missing for some observations, and subsequently make those observations uncategorised. In this paper we show that the uncategorised data can be treated as auxiliary information as in survey sampling literature. We establish a framework of parametric and nonparametric estimation by the empirical likelihood. The proposed empirical likelihood estimators improve the efficiency of estimators based on the categorised samples in the leading order. In a comparative study with the ratio estimator, we reveal robust performance of the empirical likelihood estimators. Possible applications in tax-auditing problem and genetic studies are discussed.

Key Words and Phrases: Auxiliary information; Empirical likelihood; Genetic studies; Mixture model; Survey sampling; Tax-auditing problem.

Running Title: Empirical Likelihood for a Mixture Model

1. Introduction

Mixture models have been widely used in medical, psycho-social research, and more recently in genetic studies, see for example, Ott (1999). Studies of finite mixture models dates back to at least the late 1800s (Pearson 1893, 1895). There is now a vast literature on mixture model inference, among them, we refer readers to the books by Titterington, Smith and Makov (1985) and Lindsay (1995). Statistical analysis of mixture data is not trivial. In general, the maximum likelihood estimators may not admit closed forms and numerical methods or an EM algorithm are needed. Theoretical results are more difficult to attain as the mixture parameter may lie on the boundary of the parameter space. In
addition, some nuisance parameters may be present under the null hypothesis and hence the
null distribution of the likelihood ratio test statistic may be unknown even when the sample
size is large.

Missing or incomplete data are common phenomenon, see Little and Rubin (2002) for
comprehensive reviews. A missing data problem may be treated as a mixture problem.
Consider the following situation: if we are interested in studying the relationship between
a binary variable (for example, disease status or gene mutation status) and an explanatory
variable (for example, age or blood pressure). For economic or ethic reasons, the binary
variable is difficult to record. If none of the binary variable is known, then we have the
standard mixture problem. On the other hand, if the binary variable is available only for part
of the observations, then we have a type II mixture problem (Hosmer 1973). Hosmer (1973)
reported a study whose goal was to find the proportion of male halibut in each age class.
The sex of halibut can be determined only by dissection of the fish. International Halibut
Commission has two sources of data, its own research cruises and commercial catches. Sex,
age and length are available from fish taken on the research cruises. Only age and length can
be obtained from the commercial catches. Hosmer assumed normality of length distributions
in each sex group in his estimation of the male proportion.

Suppose a population is composed of a mixture of two continuous sub-populations Π_1 and Π_2, with distribution functions F_1 and F_2, and in proportions π and $1 - \pi$ respectively. A sample of n observations is taken from the mixture and, for some $0 < \rho < 1$, $m = \lfloor np \rfloor$ of these are selected at random and categorised correctly by further examination. Let x_1, \ldots, x_m be data from F_1 and y_1, \ldots, y_m be from F_2, respectively. Furthermore, denote the unclassified data as z_1, \ldots, z_l, where $l = n - m$. If we are interested in some characteristics of Π_1 and Π_2, for example, underlying densities f_1 and f_2 or means μ_1 and μ_2, then the type II mixture problem can be treated as a problem with auxiliary information, where the explanatory variables with missing binary status contains the auxiliary information. Specifically, our interest in this type II mixture problem is motivated by the following two examples.

Example 1: Tax-auditing applications.

Let w_i be the size of the i-th transaction and δ_i be a binary variable, with $\delta_i = 1$ if the
transaction is taxable and 0 otherwise. The money amount w_i is known for n transactions of a company. The quantity $T = \sum_{i=1}^{n} \delta_i w_i$, the total taxable amount, is of interest. In practice, we can only monitor a portion of δ_i’s by randomly selecting $m = [n\rho]$ transactions without replacement from the finite population $\{(\delta_1, w_1), ..., (\delta_n, w_n)\}$. If we assume the finite population comes from a superpopulation, then $\theta =: E(T/n) = E(\delta w) = \pi E(w|\delta = 1)$.

Under a generalized linear model, Firth and Bennett (1998) considered robust model based estimation of θ. Without postulating a parametric model on $P(\delta = 1|w)$, we will construct more efficient estimators of the subpopulation mean $E(w|\delta = 1)$ and the mixture proportion π, which lead to a more efficient estimator of θ, by using the auxiliary information.

Example 2: Genetic Applications.

A genetic study is to explore the association between gene expressions and adverse clinical outcomes. Although the use of genetic profiling holds great promise for the future, currently this technology can only be applied to a small portion of cancer patients due to its high cost as well as its limited access to the tumor cells. Take the prostate cancer as an example. It is known that there is an association between Her-2 over-expression and high Prostate Specific Antigen (PSA) values. Patients with the pathologically organ confined disease were tested for specific genetic markers, including Her-2 status, along with their PSA values. Due to the high cost of genetic confirmation, most patients’ Her-2 status are unknown. However the PSA values are easily attainable. Clinically, it would be of much interest to find the mean PSA levels for Her-2 over-expressed and not over-expressed patients.

Motivated by ratio estimation in survey sampling (Cochran, 1977), Hall and Titterington (1985) gave a ratio type adjustment to the standard kernel density estimators of f_i for the type II mixture problem. They showed that the ratio type density estimator has a smaller asymptotic variance than the density estimators based on the categorised samples. In a related study designed to improve the estimation of the mixture proportion π, Hall and Titterington (1984) constructed a sequence of multinomial approximations and maximum likelihood estimators of the mixture proportions by data binning. By allowing the number of bins goes to infinite, their estimator can reach the Cramér-Rao lower bound asymptotically. In this paper, we employ empirical likelihood (Owen, 1988; 1990) to improve estimation
efficiency by utilising information contained in the uncategorised sample. A partial maximum
empirical likelihood estimators of μ_i, $F_i(x)$ and $f_i(x)$, and π are proposed. Comparing
with estimators based on the categorised samples only, the proposed estimators improve
the efficiency of estimation in the leading order. Our analysis shows that the empirical
likelihood estimators of the densities $f_i(x)$ are as efficient as the ratio type estimators of Hall
and Titterington (1984). The attraction of the empirical likelihood proposal is that it can
be easily applied to estimation of other parameters such as μ_i, $F_i(x)$ and π within a single
framework. For estimating μ_i, we show that the ratio estimator can encounter difficulties
in capturing information contained in the uncategorised sample since it may not be able to
prevent the larger variance in the uncategorised sample from adversely affecting the quality
of estimation. To make the ratio estimator work, certain relationship between the mixture
mean and variance has to exist. Indeed, due to the nature of the kernel density estimation,
this relationship is present for density estimation considered in Hall and Titterington (1985).
Our empirical likelihood estimator for π, although may not be able to reach the Cramér-
Rao lower bound asymptotically, is easily obtained as a by-product of estimating other
parameters. Our simulation shows that it has comparable finite sample performance with
Hall-Titterington estimator.

This paper is organised as follows. Section 2 proposes the empirical likelihood estimators
for the means and the mixture proportion. The efficiency of these estimators are evaluated
in Section 3 in a comparative study with the ratio estimator. Section 4 contains extentions
to distribution and density function estimation. Section 5 reports results from simulation
studies. All the proofs are given in the appendix.

2. Empirical Likelihood Based Estimation

Let $\mu = \pi \mu_1 + (1 - \pi) \mu_2$ be the mean of the mixture. We start our expedition with
estimation of μ_i. Extentions to estimation of $F_i(x)$ and $f_i(x)$ will be treated in Section 4.

The empirical likelihood for (μ_1, μ_2, π) based on the categorised data is

$$L(\mu_1, \mu_2, \pi) = \max_{p_i, q_j} \pi^{m_1} (1 - \pi)^{m_2} \prod_{i=1}^{m_1} p_i \prod_{j=1}^{m_2} q_j$$

subject to constraints: $\sum_{i=1}^{m_1} p_i = 1$, $\sum_{j=1}^{m_2} q_j = 1$, $\sum_{i=1}^{m_1} p_i (x_i - \mu_1) = 0$ and $\sum_{j=1}^{m_2} q_j (y_j - \mu_2) =$
Standard derivations in empirical likelihood (Owen, 1990) show that the optimal \(p_i \) and \(q_j \) have expressions

\[
p_i = m_1^{-1} \left\{1 + \lambda_1(x_i - \mu_1)\right\}^{-1} \quad \text{and} \quad q_j = m_2^{-1} \left\{1 + \lambda_2(y_j - \mu_2)\right\}
\]

where \(\lambda_i \)s are Lagrange multipliers satisfying

\[
\sum_{i=1}^{m_1} \frac{x_i - \mu_1}{1 + \lambda_1(x_i - \mu_1)} = 0 \quad \text{and} \quad \sum_{j=1}^{m_2} \frac{y_j - \mu_2}{1 + \lambda_2(y_j - \mu_2)} = 0.
\]

The log empirical likelihood ratio is then

\[
\ell(\mu_1, \mu_2, \pi) = m_1 \log \pi + m_2 \log(1 - \pi) - \sum \log\left\{1 + \lambda_1(x_i - \mu_1)\right\} - \sum \log\left\{1 + \lambda_2(y_j - \mu_2)\right\}.
\]

To use the information contained in the uncategorised sample, we maximise \(\ell(\mu_1, \mu_2, \pi) \) subject to

\[
\pi \mu_1 + (1 - \pi) \mu_2 = \bar{W}.
\]

It can be shown that

\[
\hat{\pi} = \frac{m_1}{m_1 + m_2} \left\{1 + \lambda_1(\bar{W} - \mu_1)\right\}.
\]
The empirical likelihood ratio \(\ell(\mu_1, \mu_2, \pi) \) can be written as \(\ell(\pi) + \ell(\mu_1, \mu_2) \) where \(\ell(\pi) = m_1 \log(\pi) + m_2 \log(1 - \pi) \). Clearly \(\ell(\pi) \) is concave. Let \(H = (x_{(1)}, x_{(m_1)}) \times (y_{(1)}, y_{(m_2)}) \) where \(x_{(1)} \) and \(x_{(m_1)} \) are the smallest and largest \(x \)-sample values, and \(y_{(1)} \) and \(y_{(m_2)} \) are the smallest and largest \(y \)-sample values, respectively. As \(\ell(\mu_1, \mu_2) \) is concave (Hall and La Scala, 1990) on \(H \), \(\ell(\mu_1, \mu_2, \pi) \) is concave on \(H \times (0, 1) \). Let \(D = \{ w = \pi \mu_1 + (1 - \pi) \mu_2 \mid (\mu_1, \mu_2, \pi) \in H \times (0, 1) \} \) = \(\{ \min \{ x_{(1)}, y_{(1)} \}, \max \{ x_{(m_1)}, y_{(m_2)} \} \} \) be the convex combination of \(H \). The constraint maximising \(\ell(\mu_1, \mu_2, \pi) \) always admits a unique solution provided \(\bar{W} \in D \). In a finite sample, it may happen that \(\bar{W} \) is outside of \(D \) which makes the above maximisation of \(\ell(\mu_1, \mu_2, \pi) \) not attain a finite solution. However, as \(n \) gets large, the probability of this happening goes to zero.

It should be noted that the above formulation is not a full empirical likelihood as the likelihood is constructed based on the categorized data only. This is based on considerations of computational and theoretical tractability. More discussions on this point are provided in Section 6.

3. Efficiency of Empirical Likelihood Estimators

Let \(\sigma_1^2 = E(X - \mu_1)^2 \) and \(\sigma_2^2 = E(Y - \mu_2)^2 \), and \(\sigma^2 = \pi \sigma_1^2 + (1 - \pi) \sigma_2^2 + \pi(\mu - \mu_1)^2/(1 - \pi) \) be the variance of the mixture population. Moreover, let \(T_0 = m^{-1}(m_1 \bar{X} + m_2 \bar{Y}) - \bar{W} \) which is \(O_p(n^{-1/2}) \). Derivations given in the Appendix show that

\[\hat{\mu}_1 = \bar{X} - \sigma^{-2} \sigma_1^2 T_0 + O_p(n^{-1}), \]
\[\hat{\mu}_2 = \bar{Y} - \sigma^{-2} \sigma_2^2 T_0 + O_p(n^{-1}) \] and
\[\hat{\pi} = \frac{\bar{W}}{1 + \sigma^{-2} T_0(\mu - \mu_1)} + O_p(n^{-1}). \]

Hence, the empirical likelihood utilises the auxiliary information by adding correction terms of \(O_p(n^{-1/2}) \) to the estimators \(\hat{X}, \hat{Y} \) and \(\hat{\pi} \) based solely on the categorised samples.

Derivations given in the appendix show

\[\text{Var}(\hat{\mu}_1) = \text{Var}(\bar{X}) - n^{-1}(1 - \rho)\sigma_1^4/(\sigma^2\rho) + O(n^{-2}) \] and
\[\text{Var}(\hat{\mu}_2) = \text{Var}(\bar{Y}) - n^{-1}(1 - \rho)\sigma_2^4/(\sigma^2\rho) + O(n^{-2}) \] and
\[\text{Var}(\hat{\pi}) = \frac{1}{\sigma^2} \left(1 + \sigma^{-2} T_0(\mu - \mu_1)\right)^2 + O(n^{-1}). \]

6
\[\text{Var}(\hat{\mu}_2) = \text{Var}(\bar{Y}) - n^{-1}(1 - \rho)\sigma^2/(\sigma^2 \rho) + O(n^{-2}). \]

(11)

These indicate reduction of variance by utilising information contained in the uncategorised sample. In particular, the smaller the \(\rho \) is, the larger the variance reduction. The relative variance reduction also increases as \(\rho \) decreases.

In survey sampling, a widely used adjustment to a “standard” estimator is the ratio estimator. It is well known that ratio estimation performs well if the explanatory variable and the response are highly correlated. We now investigate its performance in the case of mean estimation.

Let \(\bar{\mu} = (m_1 \bar{X} + m_2 \bar{Y})/(m_1 + m_2) \) be the mean of the categorised samples. A ratio type adjustment to \(\bar{X} \) is \(\bar{\mu}_{1r} = \bar{X}W/\bar{\mu} \). It can be shown that

\[\bar{\mu}_{1r} = \bar{X}\{1 - (1 - \rho)(m/m_2)^2T_0/\mu\} + O_p(n^{-1}). \]

(12)

The same technique that yields (10) and (11) gives, by ignoring terms of \(o(n^{-1}) \),

\[\text{Var}(\bar{\mu}_{1r}) = \text{Var}(\bar{X})\{1 - (1 - \rho)\mu_1\pi/\mu\}^2 + n^{-1}(1 - \rho)^2\mu_1^2\{\sigma^2/(1 - \rho) + (1 - \pi)\sigma^2/\rho\}/\mu^2. \]

This indicates that the ratio adjustment does not necessarily lead to a variance reduction and a variance inflation is possible when \(\mu \) is close to zero. Indeed, the larger variance in the uncategorised sample can penetrate into the estimator and make things worse. A key component of the ratio adjustment is \(T_0/\mu \) as revealed in (12). Equation (A.7) in the Appendix shows that

\[\text{Var}(T_0) = n^{-1}(1 - \rho)\sigma^2/\rho + O(n^{-2}) \]

which means \(\text{Var}(T_0/\mu) \sim n^{-1}\sigma^2/\mu^2 \). To control the variance of this correction term, we either need a relationship between \(\mu \) and \(\sigma^2 \) in order to cancel out \(\mu \) appeared in the denominator or \(\mu \) has to be away from zero itself, both of which may not be satisfied in general. However, the relationship does exist in the case of the nonparametric density estimation considered in Hall and Titterington (1985), due to the nature of kernel density estimation. A underlying cause for the problem of the ratio estimator, suggested by a referee, is its not being invariant under the location shift transformation.
In contrast, the correction term in the empirical likelihood adjustment is T_0/σ^2 in (7) and (8). Now, $\text{Var}(T_0/\sigma^2) \sim n^{-1}\sigma^{-2}$ which indicates a more comfortable situation than the ratio adjustment as σ^2 is automatically away from zero.

The empirical likelihood estimation of the mixture proportion π is more efficient too. Indeed, based on derivations shown in the appendix,

$$\text{Var}(\hat{\pi}) = \text{Var}(\hat{\pi}) \left[1 - (\mu - \mu_1)^2\pi(1 - \rho)/\{(1 - \pi)\sigma^2\}\right] + O(n^{-2}).$$ \hspace{1cm} (13)

As $(\mu - \mu_1)^2\pi(1 - \rho)/\{(1 - \pi)\sigma^2\} \in [0, 1)$, a variance reduction is registered for $\hat{\pi}$.

The empirical likelihood estimator for π is “parametric” in the sense that it is a by-product of the inference for the means. This is shown in (13) where the variance reduction depends on $(\mu - \mu_1)^2/\sigma^2$. Hall and Titterington (1984) proposed an nonparametric estimator, denoted as $\hat{\pi}_{HT}$, by binning the domain of the distribution and maximise a multinomial likelihood. The asymptotic variance of their estimator is

$$\text{Var}(\hat{\pi}_{HT}) \{1 - \pi(1 - \rho)(1 - \pi)^{-1}\}\{\int (f_1^2/f) - 1\}$$

which converges to the Cramér-Rao lower bound as the number of bins goes to infinite. A simulation study reported in Section 5 reveals that our estimator $\hat{\pi}$ had similar performance to $\hat{\pi}_{HT}$.

4. Extensions

The theory developed in the previous section can be readily extended to other parameters of Π_i. In this section, we consider the tax-auditing problem and the nonparametric estimation of the distribution and density functions of Π_i respectively.

4.1 Application to the Tax-Auditing Example

As outlined in the introduction, the parameter of interest is $\theta = \pi\mu_1$, where $\mu_1 = E(w|\delta = 1)$. An empirical likelihood estimator of θ is $\hat{\theta} = \hat{\pi}\hat{\mu}_1$ by plugging-in $\hat{\pi}$ and $\hat{\mu}_1$. An estimator that only uses the categorised sample is $\hat{\theta} = \hat{\pi}\hat{X}$. 8
Since \(\hat{\theta} = \pi \mu_1 + \mu_1(\hat{\pi} - \pi) + \pi(\hat{\mu}_1 - \mu_1) + (\hat{\pi} - \pi)(\hat{\mu}_1 - \mu_1) \), it is easy to see that
\(E(\hat{\pi} \hat{\mu}_1) = \pi \mu_1 + O(n^{-1}) \) implying that the bias is negligible. The variance of \(\hat{\theta} \) is
\[
\text{Var}(\hat{\theta}) = \mu_1^2 \text{Var}(\hat{\pi}) + \pi^2 \text{Var}(\hat{\mu}_1) + 2 \mu_1 \pi \text{Cov}(\hat{\pi}, \hat{\mu}_1) + o(n^{-1}).
\]
From (7) and (9),
\[
\text{Cov}(\hat{\pi}, \hat{\mu}_1) = (\mu - \mu_1) \pi \sigma^{-2} \text{Cov}(T_0, \hat{X}) - (\mu - \mu_1) \pi \sigma^2 \sigma^{-4} \text{Var}(T_0) + o(n^{-1})
\]
which mirrors the fact that \(\text{Cov}(\hat{\pi}, \hat{X}) = 0 \). This together with (10) and (13) leads to
\[
\text{Var}(\hat{\theta}) = \mu_1^2 \text{Var}(\hat{\pi}) + \pi^2 \text{Var}(\hat{\mu}_1) + o(n^{-1}).
\]
Thus, \(\hat{\theta} \) has a smaller variance than \(\tilde{\theta} \) as both \(\hat{\pi} \) and \(\hat{\mu} \) have smaller variances than those of \(\tilde{\pi} \) and \(\tilde{\mu} \) respectively.

4.2 Distribution Function Estimation

Let \(F_i \) be the distribution functions, of \(\Pi_i \), and \(F = \pi F_1 + (1 - \pi) F_2 \) be the mixture distribution function. Conventional estimators of \(F_i \) and \(F \) at a fixed \(x \) are the empirical distribution functions:
\[
F_{1,m_1}(x) = m_1^{-1} \sum_{i=1}^{m_1} I(X_i \leq x), \quad F_{2,m_2}(x) = m_2^{-1} \sum_{j=1}^{m_2} I(Y_j \leq x) \quad \text{and}
\]
\[
F_i(x) = n^{-1} \left\{ \sum_{i=1}^{m_1} I(X_i \leq x) + \sum_{j=1}^{m_2} I(Y_j \leq x) + \sum_{k=1}^{l} I(Z_k \leq x) \right\}
\]
where \(I(\cdot) \) is the indicator function.

Since \(F_1(x), \, F_2(x) \) and \(F(x) \) are the means of \(I(X_i \leq x), \, I(Y_j \leq x) \) and \(I(Z_k \leq x) \) respectively, the scheme established in Section 2 is applicable for setting up \(\ell \{ F_1(x), F_2(x), \pi \} \), the empirical likelihood for \((F_1(x), F_2(x), \pi) \). Let \(\hat{F}_i(x) \) be the estimators of \(F_i(x) \) that minimizes \(\ell \{ F_1(x), F_2(x), \pi \} \) subject to \(\pi F_1(x) + (1 - \pi) F_2(x) = F_i(x) \). Then from the results developed in Section 3, we have, after ignoring terms of \(O(n^{-2}) \), for \(i = 1 \) and 2,
\[
\text{Var} \{ \hat{F}_i(x) \} = \text{Var} \{ F_{i,m_i}(x) \} - n^{-1}(1 - \rho) F_i^2(x) \{ 1 - F_i(x) \}^2 / \{ \rho \sigma^2(x) \}
\]
where \(\sigma^2(x) = \pi F_1(x \{1 - F_1(x)\} + (1 - \pi) F_2(x \{1 - F_2(x)\} + \pi(1 - \pi) \{F_1(x) - F_2(x)\}^2 \).

This means a variance reduction of order \(n^{-1} \) from the conventional estimators \(F_{i,m_i}(x) \).

4.3 Density Estimation

Let \(f_i \) be the probability density functions of \(\Pi_i \), \(f = \pi_1 f_1 + (1 - \pi_1) f_2 \) be the density of the mixture, \(K(\cdot) \) be a kernel function and \(K_h(u) = h^{-1} K(u/h) \) where \(h \) is a smoothing bandwidth such that \(h \to 0 \) as \(n \to \infty \). Standard kernel density estimator of \(f_i \) and \(f \) based on the categorised samples and the entire sample are, respectively,

\[
\hat{f}_1(x) = m_1^{-1} \sum_{i=1}^{m_1} K_h(x - X_i) \quad \text{and} \quad \hat{f}_2(x) = m_2^{-1} \sum_{j=1}^{m_2} K_h(x - Y_j) \quad \text{and}
\]

\[
\hat{f}^*(x) = n^{-1} \{ \sum_{i=1}^{m_1} K_h(x - X_i) + \sum_{j=1}^{m_2} K_h(x - Y_j) + \sum_{k=1}^I K_h(Z_k - x) \}.
\]

The same bandwidth \(h \) is used in the above formulation of density estimators, which is designed to reduce the variation of \(\hat{f}_1(x) \) or \(\hat{f}_2(x) \) one at a time. For instance, if the aim is to reduce the variance of \(\hat{f}_1(x) \), \(h \) should be chosen based on the first categorised sample with the aim of minimising the error of estimation of \(f_1(x) \). Methods for choosing \(h \) are discussed in Silverman (1986) and Wand and Jones (1995).

Let \(\mu_1(x) = E\{K_h(x - X_i)\} \) and \(\mu_2(x) = E\{K_h(x - Y_j)\} \). Standard results in kernel density estimation show that \(\mu_i(x) = f_i(x) + O(h^2) \) for \(i = 1 \) and \(2 \). So, up to an error of \(O(h^2) \), \(f_1(x) \) and \(f_2(x) \) can be regarded as the mean of \(K_h(x - X_i) \) and \(K_h(x - Y_j) \) respectively. Hence \(\ell\{f_1(x), f_2(x), \pi\} \), the empirical likelihood for \((f_1(x), f_2(x), \pi) \) based on the categorised samples can be constructed as for \(\mu_i \) in (3). Let \((\hat{f}_1(x), \hat{f}_2(x), \hat{\pi}) \) be the maxima of \(\ell\{f_1(x), f_2(x), \pi\} \) subject to

\[
\pi f_1(x) + (1 - \pi) f_2(x) = \hat{f}^*(x).
\]

Then, the results given in Section 3 are valid. In particular, let \(R(K) = \int K^2(u)du \). From results on kernel density estimation, we have \(\sigma_i^2 = h^{-1} R(K) f_i(x) \{1 + O(h)\} \) for \(i = 1 \) and \(2 \),

\[
\sigma^2 = \pi \sigma_1^2 + (1 - \pi) \sigma_2^2 + \pi(1 - \pi)^{-1} \{f(x) - f_1(x)\}^2 = h^{-1} R(K) f(x) \{1 + o(1)\}
\]
which indicates that σ^2 is proportional to the mixture mean $\mu = f(x)$. Moreover, we have the following analogies of (10) and (11):

$$\text{Var}\{\hat{f}_i(x)\} = \text{Var}\{\tilde{f}_i(x)\} - (nh)^{-1}(1 - \rho)f_i^2(x)/\{\rho f(x)\} + o((nh)^{-1}).$$

The amount of variance reduction is $(nh)^{-1}(\rho^{-1} - 1)R(K)f_i^2(x)/f(x)$ which is the same as that achieved by Hall and Titterington (1985)'s ratio estimator. The reason for the success of the ratio adjustment here is the relationship between σ^2 and μ as revealed in (16). Although the proposed empirical likelihood estimators for $f_i(x)$ does not improve the Hall-Titterington estimator, it is a bona fide density, which is not the case for the ratio estimator.

5. Simulation Results

In this section, we present simulation results designed to evaluate the performance of the empirical likelihood estimators. First we consider estimation of the mixture proportion π. The empirical likelihood estimator $\hat{\pi}$ was compared with the naive estimator $\tilde{\pi} = m_1/(m_1 + m_2)$ and $\hat{\pi}_{HT}$. We used both 8 and 4 bins respectively when calculating $\hat{\pi}_{HT}$. Since 4 and 8 bins gave similar results, only the results for 8 bins are reported.

For estimation of the means μ_i, the empirical likelihood estimators $\hat{\mu}_i$ were compared with \bar{X} or \bar{Y}, the sample means based on the categorised data, and the ratio estimators $\hat{\mu}_{1r}$ or $\hat{\mu}_{2r}$.

For a fixed $n = 400$ and $m = 50$ and 100 respectively, two simulation models were examined: a normal mixture model $\pi N(0, 1) + (1 - \pi)N(\mu, 1)$ and an exponential mixture model $\pi\exp(1) + (1 - \pi)\exp(1/\mu)$ for different combination of π and μ. As the simulation results for $m = 50$ and $m = 100$ share the same pattern, we will report only those for $m = 50$. Tables 1 to 4 summarise the means and variances of the estimators considered in this paper based on 1000 replications.

For estimation of π, $\hat{\pi}$ and $\hat{\pi}_{HT}$ had overall similar performance and both had smaller variance than the naive estimator $\tilde{\pi}$ as predicted by the theory. When the two populations were well separated from each other, $\hat{\pi}_{HT}$ was slightly better than $\hat{\pi}$. On the other hand, if the two populations were close, the proposed empirical likelihood estimator was slightly better.
In the estimation of the means, the empirical likelihood estimators are the clear winner among the three estimators. Most evidently, the ratio estimators performed worse than \bar{X} or \bar{Y} in some cases. It is the most alarming to see that the variance of $\hat{\mu}_2$ is out of control in the normal mixture model when $\pi = 0.8$. The situation is getting a little better when m is increased to 100 and n is still 400.

6. Discussions

In this paper, empirical likelihood has been used to improve estimation efficiency in a type II mixture model. The proposed empirical likelihood formulation is effectively a partial likelihood based on the categorised sample. The information in the uncategorized sample is utilised via a constraint involving the grand mean of the entire sample. Two referees have pointed out an alternative full likelihood formulation which adds an extra component $\prod_{i=1}^{m} \{\pi p_i + (1 - \pi)q_i\}$ to (1) after indexing p_i from 1 to $m_1 + l$ and q_j from 1 to $m_2 + l$ respectively. This would lead to more efficient estimators. Considerations behind our formulation are easier computation and tractable theoretical analysis despite it may not be the most efficient.

There is a potential bias for the sampling methods discussed in this paper if an unequal weight sampling strategy is used. This would likely be the case for tax-auditing problem since large amount of transaction is more likely monitored. We are exploring empirical likelihood methods to adjust for this sampling bias.

Acknowledgments

The authors thank two referees for constructive comments and suggestions which have improved the presentation of the paper.

Appendix. Technical Details

Derivations of (7), (8) and (9). Let $\eta = m_1^{-1} \sum_{i=1}^{m_1} (X_i - \mu_1)^2$ and $\xi = m_2^{-1} \sum_{i=1}^{m_2} (Y_i - \mu_2)^2$. A standard proof in empirical likelihood for instance that given in Owen (1990) leads to
\(\lambda_i = O_p(n^{-1/2}) \) for \(i = 1 \) and \(2 \). Inverting (2),

\[
\lambda_1 = (\bar{X} - \hat{\mu}_1)\eta^{-1} + O_p(n^{-1}) \quad \text{and} \quad \lambda_2 = (\bar{Y} - \hat{\mu}_2)\xi^{-1} + O_p(n^{-1}) \quad \text{(A.1)}
\]

From (6), \((1 - \hat{\pi})/\hat{\pi} = m_1^{-1}m_2\{1 - \lambda_1(W - \hat{\mu}_1)(m_1 + m_2)/m_2\} + O_p(n^{-1}) \). This and (5) imply

\[
\lambda_2 = \lambda_1 + O_p(n^{-1}) \quad \text{(A.2)}
\]

Let \(T = \bar{Y} + m_1m_2^{-1}X - (m_1m_2^{-1} + 1)\bar{W} \). Clearly, \(T_0 = m_2m^{-1}T \). From (A.1) and the fact that \(\hat{\mu}_2 = (W - \hat{\pi}\hat{\mu}_1)/(1 - \hat{\pi}) \),

\[
\bar{Y} - \hat{\mu}_2 = \{\bar{Y} + m_1m_2^{-1}\hat{\mu}_1 - (m_1m_2^{-1} + 1)\bar{W} + m_1m_2^{-1}\lambda_1(W - \hat{\mu}_1)(\hat{\mu}_1 - \bar{Y})\}
\]

\[
\times\{1 - m_1m_2^{-1}\lambda_1(\bar{W} - \hat{\mu}_1)\}^{-1}
\]

\[
= T - m_1m_2^{-1}\{1 + (m_1m_2^{-1} + 1)(\bar{W} - \bar{X})^2\eta^{-1}\}(\bar{X} - \hat{\mu}_1) + O_p(n^{-3/2}) \quad \text{(A.3)}
\]

From (A.1), (A.2) and (A.3), by ignoring terms of \(O_p(n^{-1}) \)

\[
(\bar{X} - \hat{\mu}_1)\eta^{-1} = [T - m_1m_2^{-1}\{1 + (m_1m_2^{-1} + 1)(\bar{W} - \hat{\mu}_1)^2\eta^{-1}\}(\bar{X} - \hat{\mu}_1)]\xi^{-1} \quad \text{(A.4)}
\]

Let \(\hat{\alpha} = \xi + m_1m_2^{-1}\eta + m_1m_2^{-1}(m_1m_2^{-1} + 1)(\bar{W} - \bar{X})^2 \). Then (A.4) implies

\[
\bar{X} - \hat{\mu}_1 = \hat{\alpha}^{-1}\eta T + O_p(n^{-1}) = \sigma^{-1}\sigma_T^2 T_0 + O_p(n^{-1})
\]

where \(\alpha = \sigma^2 + \pi\sigma_r^2/(1 - \pi) + \pi(\mu - \mu_1)^2/(1 - \pi)^2 \) is the leading order term of \(E(\hat{\alpha}) \). This and the fact that \(\alpha = \sigma^2/(1 - \pi) \) derive (7). A similar exercise leads to (8). From (A.1), \(\lambda_1 = \alpha^{-1}T + O_p(n^{-1}) \). This and (6) imply (9).

Derivations of (10) and (11). We first need deriving \(Var(T) \). Let \(\bar{Z} \) is the average of the uncategorised sample and \(T = n^{-1}\{m_1m_2^{-1}\bar{X} + \bar{Y} - nm_2^{-1}\bar{Z}\} \). Then,

\[
E(T|m_1, m_2) = n^{-1}(m_1m_2^{-1} + 1)(\hat{\pi} - \pi)(\mu_1 - \mu_2) + O_p(n^{-1}) \quad \text{and} \quad \text{(A.5)}
\]

\[
Var(T|m_1, m_2) = \{(l/nm_2)\{\alpha - (1 - l/n)m_1m_2^{-1}(m_1m_2^{-1} + 1)(\mu - \mu_1)^2\} \quad \text{(A.6)}
\]

\[+ O_p(n^{-2}) \]

13
These mean that \(E(T) = O(n^{-1}) \). Since \(\mu - \mu_1 = -(1 - \pi)(\mu_1 - \mu_2) \),

\[
\text{Var}(T) = \text{Var}\{E(T|m_1, m_2)\} + E\{\text{Var}(T|m_1, m_2)\} = (1 - \rho)^2(\mu_1 - \mu_2)^2 \pi \frac{1}{(1 - \pi)pn} + (1 - \rho)\alpha \frac{1}{(1 - \pi)pn} - (1 - \rho)^2\pi(\mu_1 - \mu_2)^2 \frac{1}{(1 - \pi)^3pn} + O(n^{-2})
\]

\[
= n^{-1}(1 - \rho)^2\sigma^2 / \{(1 - \pi)^2 \rho\} + O(n^{-2}). \quad (A.7)
\]

A by-product of this proof is that \(T = O_p(n^{-1/2}) \) as claimed.

The variance of \(\hat{\mu}_1 \) is \(\text{Var}(\hat{\mu}_1) = E\{\text{Var}(\hat{\mu}_1|m_1, m_2)\} + \text{Var}\{E(\hat{\mu}_1|m_1, m_2)\} \). From (7) and (A.5)

\[
E(\hat{\mu}_1|m_1, m_2) = \mu_1 - n^{-1}\sigma_1^2\alpha^{-1}l(m_1m_2^{-1} + 1)(\pi - \pi)(\mu_1 - \mu_2) + O(n^{-2}). \quad (A.8)
\]

Thus, by ignoring the terms of \(O(n^{-2}) \) and noticing \(\mu_1 - \mu_2 = -(\mu - \mu_1)/(1 - \pi) \),

\[
\text{Var}\{E(\hat{\mu}_1|m_1, m_2)\} = \sigma_1^4(\mu_1 - \mu_2)^2V\{\alpha^{-1}(l/n)(m_1m_2^{-1} + 1)(\pi - \pi)\} = \sigma_1^4(\mu - \mu_1)^2(1 - \pi)^{-3}(1 - \rho)^2\alpha_0^{-1}\pi\rho^{-1}n^{-1} \quad (A.9)
\]

where \(\alpha_0 = \sigma_2^2 + \pi(1 - \pi)^{-1}\sigma_1^2 + \pi(1 - \pi)^{-2}(\mu - \mu_1)^2 \).

From (A.6) and the fact that \(\text{Cov}(\hat{X}, T|m_1, m_2) = (l/n)\sigma_1^2/m_2 \),

\[
\text{Var}(\hat{\mu}_1|m_1, m_2) = \sigma_1^2/m_1 + \sigma_1^4\alpha^{-2}\{l/(nm_2)\}\{\alpha - (1 - l/n)m_1m_2^{-1}(m_1m_2^{-1} + 1)(\mu - \mu_1)^2\}
\]

\[
= 2\sigma_1^4\alpha^{-1}l/(nm_2)
\]

\[
= \sigma_1^2/m_1 - \sigma_1^4\alpha^{-1}l/(nm_2) - \sigma_1^4\alpha^{-2}(1 - l/n)m_1m_2^{-1}(m_1m_2^{-1} + 1)(\mu - \mu_1)^2.
\]

Therefore,

\[
E\{\text{Var}(\hat{\mu}_1|m_1, m_2)\} = \text{Var}(\hat{X}) - \frac{(1 - \rho)\sigma_1^4}{\alpha_0\rho(1 - \pi)n} - \frac{(1 - \rho)^2\pi(\mu_1 - \hat{\mu}_2)^2\sigma_1^4}{(1 - \pi)\rho\alpha_0^2n} + O(n^{-2}).
\]

14
This together with (A.9) derives (10). A similar analysis leads to (11).

Derivation of (13). Recall from (9) that \(\hat{\pi} = \hat{\pi} + \hat{\pi}\hat{\alpha}^{-1}T(W - X) + O_p(n^{-1}). \) Then,

\[
\text{Var}(\hat{\pi}) = \text{Var}(\hat{\pi}) + 2\text{Cov}(\hat{\pi}, \hat{\pi}T)(\mu - \mu_1)/\alpha_0 + \text{Var}(\hat{\pi}T)(\mu - \mu_1)^2/\alpha_0^2 + O(n^{-2}).
\]

From (A.5) and (A.6)

\[
\text{Cov}(\hat{\pi}, \hat{\pi}T) = \text{Cov}\{\hat{\pi}, \hat{\pi}E(T|m_1, m_2)\} = \text{Cov}\{\hat{\pi}, \hat{\pi}(l/n)(m_1m_2 - 1 + 1)(\hat{\pi} - \pi)(\mu_1 - \mu_2)\}
\]

\[
= n^{-1}\pi(1 - \rho)(\mu_1 - \mu_2)\text{Var}(\hat{\pi})/(1 - \pi)
\]

\[
= -n^{-1}\pi^2(1 - \rho)(\mu - \mu_1)/\{(1 - \pi)\rho\} + O(n^{-2}) \quad (A.10)
\]

and

\[
\text{Var}(\hat{\pi}T) = \text{Var}\{\hat{\pi}E(T|m_1, m_2)\} + E\{\text{Var}(T|m_1, m_2)\}
\]

\[
= \text{Var}\{\hat{\pi}(l/n)(m_1m_2 - 1 + 1)(\hat{\pi} - \pi)(\mu_1 - \mu_2)\}
\]

\[
+ E\left[\hat{\pi}^2\{(l\alpha/(nm_2) - l^2m_2(\hat{\pi} - \pi)^2(\mu_1 - \mu_2)^2/(n^2m_2^2)\}\}
ight]
\]

\[
= \pi^2(1 - \rho)\alpha_0/\{(1 - \pi)\rho n\} + O(n^{-2}). \quad (A.11)
\]

Combine (A.11) with (A.10), (13) is derived.

References

Department of Statistics, Iowa State University, Ames, IA 50010-1210, USA
E-mail: songchen@iastate.edu

National Institute of Allergy and Infectious Disease, National Institute of Health, Bethesda, MD 20892, USA
E-mail: jingqin@niaid.nih.gov
Table 1. Mean (variance) of different estimators discussed in section 5 based on 1000 simulations, $n = 400, m = 50$.
Normal mixture model $\pi N(0, 1) + (1 - \pi)N(\mu, 1)$.

<table>
<thead>
<tr>
<th>Estimators</th>
<th>$\pi = 0.2, \mu = 1.0$</th>
<th>$\pi = 0.5, \mu = 1.0$</th>
<th>$\pi = 0.8, \mu = 1.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\pi}$</td>
<td>0.20070 (0.00338)</td>
<td>0.50434 (0.00477)</td>
<td>0.80148 (0.00334)</td>
</tr>
<tr>
<td>$\hat{\pi}_{HT}$</td>
<td>0.20090 (0.00345)</td>
<td>0.50370 (0.00474)</td>
<td>0.80012 (0.00337)</td>
</tr>
<tr>
<td>$\hat{\pi}$</td>
<td>0.20057 (0.00301)</td>
<td>0.50373 (0.00399)</td>
<td>0.79983 (0.00304)</td>
</tr>
<tr>
<td>\hat{X}</td>
<td>0.00466 (0.10225)</td>
<td>-0.00265 (0.03856)</td>
<td>-0.01141 (0.02333)</td>
</tr>
<tr>
<td>\hat{Y}</td>
<td>0.99822 (0.025013)</td>
<td>1.00155 (0.03747)</td>
<td>0.97646 (0.11510)</td>
</tr>
<tr>
<td>$\hat{\mu}_{1r}$</td>
<td>-0.01864 (0.11414)</td>
<td>-0.05398 (0.08377)</td>
<td>-0.16230 (23.68682)</td>
</tr>
<tr>
<td>$\hat{\mu}_{2r}$</td>
<td>1.01105 (0.01506)</td>
<td>1.08614 (0.13990)</td>
<td>1.93026 (882.06761)</td>
</tr>
<tr>
<td>$\hat{\mu}_1$</td>
<td>-0.00139 (0.09234)</td>
<td>-0.00554 (0.02622)</td>
<td>0.00096 (0.01024)</td>
</tr>
<tr>
<td>$\hat{\mu}_2$</td>
<td>1.00190 (0.01020)</td>
<td>1.01017 (0.02526)</td>
<td>0.99409 (0.10116)</td>
</tr>
</tbody>
</table>

Table 2. Mean (variance) of different estimators discussed in section 5 based on 1000 simulations, $n = 400, m = 50$.
Normal mixture model $\pi N(0, 1) + (1 - \pi)N(\mu, 1)$.

<table>
<thead>
<tr>
<th>Estimators</th>
<th>$\pi = 0.2, \mu = 2.0$</th>
<th>$\pi = 0.5, \mu = 2.0$</th>
<th>$\pi = 0.8, \mu = 2.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\pi}$</td>
<td>0.19890 (0.00315)</td>
<td>0.50278 (0.00511)</td>
<td>0.79790 (0.00303)</td>
</tr>
<tr>
<td>$\hat{\pi}_{HT}$</td>
<td>0.20020 (0.00207)</td>
<td>0.50251 (0.00300)</td>
<td>0.79946 (0.00219)</td>
</tr>
<tr>
<td>$\hat{\pi}$</td>
<td>0.20018 (0.00200)</td>
<td>0.50286 (0.00282)</td>
<td>0.80005 (0.00203)</td>
</tr>
<tr>
<td>\hat{X}</td>
<td>-0.00330 (0.09825)</td>
<td>0.00827 (0.04334)</td>
<td>0.00506 (0.02719)</td>
</tr>
<tr>
<td>\hat{Y}</td>
<td>2.00354 (0.02704)</td>
<td>2.00489 (0.04111)</td>
<td>1.99994 (0.10673)</td>
</tr>
<tr>
<td>$\hat{\mu}_{1r}$</td>
<td>-0.01386 (0.09848)</td>
<td>-0.01379 (0.05090)</td>
<td>-0.05068 (0.69871)</td>
</tr>
<tr>
<td>$\hat{\mu}_{2r}$</td>
<td>2.00954 (0.02739)</td>
<td>2.06969 (0.16605)</td>
<td>2.28770 (27.04612)</td>
</tr>
<tr>
<td>$\hat{\mu}_1$</td>
<td>-0.01949 (0.09220)</td>
<td>-0.00150 (0.03350)</td>
<td>-0.00412 (0.01484)</td>
</tr>
<tr>
<td>$\hat{\mu}_2$</td>
<td>2.00538 (0.01483)</td>
<td>2.01388 (0.03320)</td>
<td>2.00598 (0.09576)</td>
</tr>
</tbody>
</table>
Table 3. Mean (variance) of different estimators discussed in section 5 based on 1000 simulations, $n = 400, m = 50$.

Exponential mixture $\pi \exp(1) + (1-\pi)\exp(1/\mu)$.

<table>
<thead>
<tr>
<th>Estimators</th>
<th>$\pi = 0.2, \mu = 1.5$</th>
<th>$\pi = 0.5, \mu = 1.5$</th>
<th>$\pi = 0.8, \mu = 1.5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\pi}$</td>
<td>0.20072 (0.00316)</td>
<td>0.50018 (0.00504)</td>
<td>0.80112 (0.00326)</td>
</tr>
<tr>
<td>$\hat{\pi}_{HT}$</td>
<td>0.20097 (0.00369)</td>
<td>0.49948 (0.00578)</td>
<td>0.80079 (0.00396)</td>
</tr>
<tr>
<td>$\hat{\pi}$</td>
<td>0.20086 (0.00320)</td>
<td>0.49988 (0.00489)</td>
<td>0.80092 (0.00336)</td>
</tr>
<tr>
<td>\hat{X}</td>
<td>0.99747 (0.10553)</td>
<td>1.00160 (0.04090)</td>
<td>0.99704 (0.02759)</td>
</tr>
<tr>
<td>\hat{Y}</td>
<td>1.49971 (0.06159)</td>
<td>1.48541 (0.09091)</td>
<td>1.51225 (0.25036)</td>
</tr>
<tr>
<td>$\hat{\mu}_{1r}$</td>
<td>1.00731 (0.10081)</td>
<td>1.00960 (0.03207)</td>
<td>0.99951 (0.01152)</td>
</tr>
<tr>
<td>$\hat{\mu}_{2r}$</td>
<td>1.50181 (0.01344)</td>
<td>1.48689 (0.04110)</td>
<td>1.50477 (0.17712)</td>
</tr>
<tr>
<td>$\hat{\mu}_1$</td>
<td>1.00254 (0.10598)</td>
<td>1.00975 (0.03441)</td>
<td>0.99880 (0.01271)</td>
</tr>
<tr>
<td>$\hat{\mu}_2$</td>
<td>1.50316 (0.01414)</td>
<td>1.48722 (0.04416)</td>
<td>1.50258 (0.19169)</td>
</tr>
</tbody>
</table>

Table 4. Mean (variance) of different estimators discussed in section 5 based on 1000 simulations, $n = 400, m = 50$.

Exponential mixture $\pi \exp(1) + (1-\pi)\exp(1/\mu)$.

<table>
<thead>
<tr>
<th>Estimators</th>
<th>$\pi = 0.2, \mu = 4.0$</th>
<th>$\pi = 0.5, \mu = 4.0$</th>
<th>$\pi = 0.8, \mu = 4.0$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{\pi}$</td>
<td>0.20050 (0.00316)</td>
<td>0.49846 (0.00492)</td>
<td>0.80014 (0.00313)</td>
</tr>
<tr>
<td>$\hat{\pi}_{HT}$</td>
<td>0.20133 (0.00327)</td>
<td>0.49836 (0.00411)</td>
<td>0.79868 (0.00274)</td>
</tr>
<tr>
<td>$\hat{\pi}$</td>
<td>0.20000 (0.00293)</td>
<td>0.49860 (0.00399)</td>
<td>0.79540 (0.00255)</td>
</tr>
<tr>
<td>\hat{X}</td>
<td>1.00452 (0.11028)</td>
<td>1.00917 (0.04449)</td>
<td>1.00243 (0.025179)</td>
</tr>
<tr>
<td>\hat{Y}</td>
<td>4.02575 (0.41346)</td>
<td>4.06645 (0.69684)</td>
<td>3.95981 (1.68587)</td>
</tr>
<tr>
<td>$\hat{\mu}_{1r}$</td>
<td>1.01754 (0.12342)</td>
<td>1.02014 (0.06266)</td>
<td>1.03437 (0.04107)</td>
</tr>
<tr>
<td>$\hat{\mu}_{2r}$</td>
<td>4.01697 (0.09403)</td>
<td>4.01916 (0.23856)</td>
<td>3.95310 (0.93674)</td>
</tr>
<tr>
<td>$\hat{\mu}_1$</td>
<td>1.00184 (0.10617)</td>
<td>1.00688 (0.04349)</td>
<td>1.01770 (0.02569)</td>
</tr>
<tr>
<td>$\hat{\mu}_2$</td>
<td>4.02037 (0.09295)</td>
<td>4.04098 (0.24162)</td>
<td>3.99416 (0.97172)</td>
</tr>
</tbody>
</table>