Problem 1 Consider the planes \(x - y + 5z = 1 \) and \(x + y = 2 \). Find a point-vector representation of their line of intersection \(p + tv \).

Problem 2 Consider the plane \(P \) defined by \(3x - 4y + z = 16 \).

a) Find an equation for the plane parallel to \(P \) and containing the point \((5, 0, -22)\).

b) Find the distance of the plane \(P \) from the origin.

Problem 3 Consider the vectors \(u = [1, -2, 2] \) and \(v = [4, 3, -1] \).

a) Find the angle between \(u, v \). Round the angle to two decimals in degrees.

b) Find the area of the parallelogram given by \(u \) and \(v \).

Problem 4 Consider the curve in the plane for \(t \in (-\pi, \pi) \) given by

\[
\begin{align*}
x &= t^2 - \cos(t) \\
y &= \sin(t).
\end{align*}
\]

a) Find all values of \(t \) where this curve is not smooth, or explain why there are none.

b) Find the velocity vector \(v \) and the acceleration vector \(a \) as functions of \(t \).

c) Find the speed at time \(t = \pi/2 \).

Problem 5 Consider the curve given by

\[
\mathbf{r}(t) = (3 + 2t)\mathbf{i} + t^2\mathbf{j} - t\mathbf{k}.
\]

a) Calculate the velocity vector \(v \) and the acceleration vector \(a \).

b) Find a point-vector representation of the tangent line to this curve at \(t = 2 \).

c) Find all times \(t \) when the velocity vector is perpendicular to the \(y \)-axis.

Problem 6 Find the limit

\[
L = \lim_{t \to 0} \frac{2e^t + \cos(t) - 3}{t} \mathbf{i} + \frac{4}{t-1} \mathbf{j} + \frac{\sin(t^2)}{t^2} \mathbf{k}
\]

as \(t \) approaches 0.
Problem 7 A spaceship travels with velocity vector \([10, 20, 30]\) initially when a rocket motor is ignited, providing a constant acceleration of \(a = [-12, 6, -4]\).

a) Find the velocity vector \(v\) at time \(t \geq 0\) as long as the motor is running.

b) If the initial position of the spaceship was \([1000, 0, 0]\), what is the position at \(t = 4\)?