Problem 1 Consider the function

\[f(x, y) = 2xy^2. \]

a) Find the gradient \(\nabla f(x, y) \).
b) Find the standard linearization \(L(x, y) \) of \(f \) in the point \(P_0 = (4, 1) \).
c) Approximate \(f(3.997, 1.002) \) using the standard linearization of part b). Use three digits after the decimal point for your answer.

Solution. a) The gradient is

\[\nabla f = [2y^2, 4xy]. \]

b) At the point \(P_0 \), the function \(f(x, y) \) has value 8 and its gradient equals \([2, 16]\). So the linearization is

\[L(x, y) = 8 + 2(x - 4) + 16(y - 1). \]

(1)

c) We use the equation (1) and put in \((x, y) = (3.997, 1.002)\). The result is

\[f(3.997, 1.002) \approx 8 + 2(-0.003) + 16(0.002) = 8.026. \]

The exact answer is

\[f(3.997, 1.002) = 8.026007976. \]

Problem 2 The equation

\[x^2 + 2xy + 5y^2 - z^2 = 4 \]

describes a surface called a one-sheeted hyperboloid.
a) Find a normal vector to this surface in the point \(P = (2, 1, 3) \).
b) Find an equation for the tangent plane to this surface in the point \(P = (2, 1, 3) \).
c) Find ONE point on this surface where the tangent plane is parallel to the \(z \)-axis.
Solution. a) The gradient of \(F(x, y, z) = x^2 + 2xy + 5y^2 - z^2 \) is

\[
\nabla F = [2x + 2y, 2x + 10y, -2z].
\]

In the point \(P \), this equals \([6, 14, -6]\). This vector is normal to the surface in \(P \).
b) Therefore, an equation for the tangent plane can be written as

\[
6(x - 2) + 14(y - 1) - 6(z - 3) = 0.
\]

Above, you can see two views of this surface with the normal vector and a rectangular piece of the tangent plane in \([2, 1, 3]\).
c) The tangent plane is parallel to the \(z \)-axis exactly if the normal \(\nabla F \) is perpendicular to the \(z \)-axis. This happens exactly for \(-2z = 0\), so \(z = 0 \). All points on the surface \(F(x, y, z) = 4 \) with this property are described by \(z = 0 \) and

\[
F(x, y, 0) = x^2 + 2xy + 5y^2 = 4.
\]

Examples are \((2, 0, 0), (-2, 0, 0)\), and \((0, \pm \sqrt{5/4}, 0)\).

Problem 3 Wind sweeps the Great Plains! Suppose that air pressure at point \((x, y)\) of the \(xy \)-plane is given by

\[
P(x, y) = x^2 + 4x - xy - y^2.
\]

Air particles always move in direction of lowest pressure (the direction where pressure decreases the fastest).
a) An air particle is at point \((3, 2)\). Find a unit vector in the direction in which the particle is moving.
b) Find an equation for the tangent line to the level curve of \(P \) through the point \((3, 2)\).
Solution. a) The gradient of \(P\) is
\[
\nabla P = (2x + 4 - y, -x - 2y,)
\]
Evaluate this at (3, 2) to get \(\nabla P(3, 2) = (8, -7)\). Since the particle always moves opposite to \(\nabla P\), the unit vector in its direction is
\[
u = \frac{1}{||\nabla P(3, 2)||} \nabla P(3, 2) = -\frac{1}{\sqrt{113}} (8, -7).
\]
b) The tangent line to the level curve through (3, 2) will be perpendicular to the gradient of \(P\) at that point. So its direction vector must be a multiple of (7, 8), to make a dot product zero with the gradient. A parametric representation of the tangent line could then be
\[
\mathbf{r}(t) = t(7, 8) + [3, 2] = (7t + 3, 8t + 2).
\]
For an equation, we note that the slope has to equal 8/7, so we could write \(\frac{8}{7}(x - 3) + 2\).

Problem 4 Consider the function \(f(x, y) = 3x^2 - xy + y^3\).

a) Using the First Derivative Test, find all candidates for local extrema of \(f\) in the plane.
b) Determine for each of these whether it is a local maximum, a local minimum, or neither, using the Second Partial Test.

Solution. a) The gradient \(\nabla f = (6x - y, -x + 3y^2,)\) vanishes for \(y = 6x\)
and $x = 0$ or $x = 1/108$. The candidates for local extrema are the two points (0, 0), (1/108, 1/18).

b) First calculate $f_{xx} = 6$, $f_{xy} = -1$, $f_{yy} = 6y$ and then $D = 36y - 1$. Then plug in the candidates to get

<table>
<thead>
<tr>
<th>point</th>
<th>D</th>
<th>loc. max/min</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>-1</td>
<td>saddle point</td>
</tr>
<tr>
<td>(1/108, 1/18)</td>
<td>2</td>
<td>loc. min. since $f_{xx} > 0$.</td>
</tr>
</tbody>
</table>

Above is a contour plot of f, overlaid with quiver plot of ∇f. There is a saddle point at (0, 0) (green) and a local extremum at (1/108, 1/18) (red). Only by looking at the arrows pointing away from the second point can you tell that the extremum is actually a local minimum.

Problem 5 You are supposed to build an open-top box out of a rectangular bottom and four rectangles attached to each of the sides of the bottom. Use marble for the bottom, at a cost of $20 per square foot. Material for the sides is stainless steel which costs $6 per square foot.

a) Express the cost $C(x, y, z)$ of materials for this box as a function of dimensions x, y for the bottom and z for the height of the box.
b) You need to build a box which has a volume of 360 cubic feet. Find the dimensions of such a box that minimize the cost.

Solution. Let x, y be the sides of the bottom and z the height of the box.

$$C(x, y, z) = 20xy + 12(xz + yz).$$

$$V(x, y) = xyz$$

so $z = 360/(xy)$ and the cost is

$$C(x, y) = 20xy + 4320/y + 4320/x.$$

The gradient of C is

$$\nabla C(x, y) = \left(20y - 4320/x^2, 20x - 4320/y^2\right).$$

This equals zero exactly if

$$x^2y = xy^2 = 216.$$

So all coordinates have to be nonzero, and $x = y = \sqrt[3]{216} = 6$. Then you get z as

$$z = \frac{360}{xy} = 10.$$