15.8 - General Change of Coordinates, eyepatch example

Example. We are going to apply a coordinate change to compute the mass of a 2D-plate defined by

\[9 \leq x^2 + y^2 \leq 16, \quad 1 \leq y^2 - x^2 \leq 9. \]

and density \(k|x^4 - y^4| \).

We want to define \(u, v \) such that

\[u = x^2 + y^2, \quad v = y^2 - x^2. \quad (1) \]

So how should we define the functions \(x = g(u, v) \) and \(y = h(u, v) \)? We solve the equations in (1) for \(x \) and \(y \). For \((x, y)\) in the first quadrant,

\[x = g(u, v) = \sqrt{\frac{u - v}{2}}, \quad y = h(u, v) = \sqrt{\frac{u + v}{2}} \]

and our transformation will only work for points \((u, v)\) where both square roots are defined. But, by symmetry, we can compute the mass of the quarter \(S \) of our region that lies in the first quadrant (colored black in the plot above), and multiply by four afterwards. Before we start, we need to compute the Jacobian

\[J(u, v) = \begin{vmatrix} 1 & -1 \\ 8\sqrt{u^2 - v^2} & 8\sqrt{u^2 - v^2} \end{vmatrix} = \frac{1}{4\sqrt{u^2 - v^2}}. \]
We also need to compute our limits for \(u, v \). They are easy! \(9 \leq u \leq 16 \) and \(1 \leq v \leq 9 \), and \(R \) is a rectangle. This already ensures \(u \geq v \), so \(g(u, v) \) is defined on \(R \). The mass of the lamina is then

\[
m = 4k \int \int_S |x^4 - y^4| \, dx \, dy = 4k \int \int_R \frac{uv}{4\sqrt{u^2 - v^2}} \, dv \, du
\]

\[
= k \int_1^9 v \left[(u^2 - v^2)^{1/2} \right]_{16}^9 \, dv
\]

\[
= k \int_1^9 v((16^2 - v^2)^{1/2} - (9^2 - v^2)^{1/2}) \, dv
\]

\[
= -\frac{k}{3} \left[(256 - v^2)^{3/2} - (81 - v^2)^{3/2} \right]_1^9
\]

\[
= \frac{k}{3} (255^{3/2} - 80^{3/2} - 175^{3/2}).
\]

Now that you have made it through this long computation, you should look again at the picture: