Problem 1 A car has position at time t given by

$$s(t) = 36t - 12t^2$$

(distance in meters, time in seconds).
(a) Find the velocity of the car at time t.
(b) Find the acceleration of the car at time t.
(c) At what time t does the car come to a stop (has velocity 0)?
(d) What is the position of this car at the time in (c)? (note - this is how far
away from a person in the road the driver needs to brake (= apply negative
acceleration) in order to avoid hitting the person).

Solution. (a) $v(t) = s'(t) = 36 - 24t$.
(b) $a(t) = s''(t) = -24$.
(c) Solve $v(t) = 0$ to get $t = 36/24 = 1.5$ (seconds).
(d) $s(1.5) = 54 - 27 = 27$ (in meters).

Problem 2 Find the absolute maximum and absolute minimum values of
the function

$$f(x) = x^4 - 4x^3 + 6x^2 + 1$$
on the interval $[-2, 2]$. Indicate at which x-values each of these extrema
occur.

Solution. We need to calculate

$$f'(x) = 4x^3 - 12x^2 + 12x$$

and solve $f'(x) = 0$. Factorize $f'(x)$ as

$$f'(x) = 4x(x^2 - 3x + 3)$$

is zero at $x = 0$ only (use the quadratic formula or complete the square to
decide that $x^2 - 3x + 3 = 0$ has no solution). So we have only three candidates
$x = -2, 0, 2$, and the table of values of $f(x)$ at these numbers is

<table>
<thead>
<tr>
<th>x</th>
<th>-2</th>
<th>0</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$f(x)$</td>
<td>73</td>
<td>1</td>
<td>9</td>
</tr>
</tbody>
</table>
and therefore the maximum of $f(x)$ on $[-2, 2]$ is 73, occurring at $x = -2$. The minimum is 1, occurring at $x = 0$.

Problem 3 Suppose the demand x (= number of units sold) of Halloween Slime Cookies$^\text{sm}$ is linked to unit price p by

$$p = \sqrt{500 - x^2}$$

(a) Find the revenue $R(p)$ as a function of p.
(b) Find the price p which gives you maximal revenue.

Solution. (a) First, we solve the demand equation for x to get

$$x = \sqrt{500 - p^2}$$

and then use $R = xp$ to get

$$R(p) = p\sqrt{500 - p^2}.$$

(b) Obviously, only $0 \leq p \leq \sqrt{500}$ are legitimate values for p. There, we differentiate

$$R'(p) = \frac{-2p}{2\sqrt{500 - p^2}} = \frac{500 - p^2}{\sqrt{500 - p^2}}.$$

Solving $R' = 0$ gives

$$500 - 2p^2 = 0$$

with solutions $p = \pm\sqrt{250} = \pm5\sqrt{10}$. Discarding the negative answer, the critical numbers (including endpoints) are $p = 0, \sqrt{250}, \sqrt{500}$. Note that $p = \sqrt{500}$ is also a point where $R(p)$ is not differentiable (has a vertical tangent line), but we had it on the list as endpoint anyway. Clearly, $R(0) = R(\sqrt{500}) = 0$ is not the maximum, so $p = \sqrt{250}$ will give maximal revenue (we could have made a table, too).

Problem 4 Suppose the revenue $R(x)$ for selling x boxes of Halloween Slime Cookies$^\text{sm}$ is actually

$$R(x) = 6x - 0.03x^2 + 0.001x^3.$$

Find the number x in $[0, 1000]$ (of boxes of cookies to sell) so that the revenue is maximal.

Solution. First,
This is always positive, \(R'(x) = 0 \) has no solution. So \(R(x) \) is always increasing, and the maximum revenue in the given \(x \)-interval occurs at \(x = 1000 \).

Problem 5 If each edge of a cube is increasing at a rate of 3 centimeters per minute, how fast is the volume increasing when \(x \), the length of an edge, is 15 centimeters long?

Solution. Let \(V \) be the volume of the cube, so \(V = x^3 \) at all times \(t \). Therefore

\[
V'(t) = 3[x(t)]^2x'(t)
\]

and substituting \(x = 15 \) and \(x' = 3 \), we get \(V'(t) = 2025 \) (in cubic centimeters per minute).

Problem 6 Suppose gross domestic product (GDP) \(G \) and population \(P \) of a country are related by the equation

\[
G^2 - 0.3GP + P^{2/3} = 17.
\]

Both \(G \) and \(P \) are functions of time \(t \). At a time when \(G = 5 \) and \(P = 8 \) (in billions $ and millions of people, respectively), the GDP grows at a rate of \(G'(t) = 0.06 \) billion $ per year. Use related rates to find the corresponding rate of change for \(P \). Include units in your answer.

Solution. We can differentiate both sides, like in the previous problem, using the Chain Rule.

\[
2GG' - 0.3(G'P + GP') + \frac{2P'}{3P^{1/3}} = 0
\]

Then we substitute \(G = 5 \), \(P = 8 \), and \(G' = 0.06 \) to get

\[
0.6 - 0.3(0.48 + 5P') + \frac{2P'}{6} = 0.
\]

Solving this for \(P' \) (multiply by 3, collect all terms with \(P' \) on the right side, divide by 3.5) gives

\[
P' = \frac{1.368}{3.5} \approx 0.391
\]

(in millions of people per year).
Problem 7 Two quantities x, y are related by

$$y^3 + xy = x^3 - x^2 - 1.$$

Suppose that y is a function of x, ie $y = f(x)$ and that for $x = 2$, $y = 1$.
(a) Find $\frac{dy}{dx}$ at $x = 2$ using implicit differentiation.
(b) Find an equation for the tangent line of the graph of $f(x)$ at $x = 2$. Use the form $y = m(x - 2) + b$.
(c) What y-value do you get for the tangent line equation from part (b) at $x = 2.03$?
Not part of this problem: this is an excellent approximation of $f(2.03)$, and this works for all x-values close to 2. Useful because the given equation $y^3 + xy = x^3 - x^2 - 1$ is hard to solve for y. See the graph of $f(x)$ and the tangent line below.

Solution. (a) Differentiate both sides:

$$3y^2 y' + y + xy' = 3x^2 - 2x$$

then collect all terms with y' on the left side, factor out y' and solve for y':

$$y'(x) = \frac{3x^2 - 2x - y}{3y^2 + x}$$

(b) Use part (a) and plug in $x = 2$, $y = 1$ into the formula for y' to get

$$y'(2) = \frac{12 - 4 - 1}{3 + 2} = \frac{7}{5}.$$
Then the desired tangent line has slope $7/5$, passes through $(2, 1)$. It therefore has a point-slope equation

$$y = \frac{7}{5}(x - 2) + 1.$$

(c) Simply substitute $x = 2.03$ into the tangent line equation from part (b) to get

$$y = \frac{7}{5}(2.03 - 2) + 1 = 1.042.$$

Problem 8 Find the indefinite integrals (= family of all antiderivatives) of

(a) $f(x) = 15x^4 - 8x + 1$
(b) $g(u) = 2u^{3/4} - 3$
(c) $h(t) = 12(3t^4 - 5)^8t^3$

Solution. Make sure to keep the same variable as in the problem, and to add on the integration constant at the end. For (c), use the substitution $u = 3t^4 - 5$.

$$\begin{align*}
(a) & \int f(x) \, dx = 3x^5 - 4x^2 + x + C \\
(b) & \int g(u) \, du = \frac{8}{7}u^{7/4} - 3u + C \\
(c) & \int h(t) \, dt = \frac{1}{9}(3t^4 - 5)^9 + C
\end{align*}$$

Problem 9 Suppose the marginal productivity in building x luxury cars is

$$P'(x) = 2e^{-0.1x}.$$

(a) Solve an indefinite integral to find $P(x)$ up to a constant.
(b) Given that $P(0) = 0$, find $P(x)$.

Solution. (a) We use our integration formulas from 7.1 to get

$$P(x) = \int 2e^{-0.1x} \, dx = -20e^{-0.1x} + C.$$

(b) From $P(0) = 0$, substituting into the preceding equation, we get

$$0 = -20 + C$$
so $C = 20$ and

$$P(x) = 20 - 20e^{-0.1x}.$$