Math 151 - Exam 1B - solutions

Problem 1 [12 pts] Find all solutions: $2^{x^2+3x} = 16$.
Solution Take logarithms with base 2 to get $x^2 + 3x = 4$, so $x = -4$ or $x = 1$ by the quadratic formula.

Problem 2 [15 pts] Solve for t. First, write in logarithmic form, then round the answer to four decimal places.

$$4^t = 5.$$

Solution The logarithmic form of this equation is

$$t \log 4 = \log 5.$$

The answer is then

$$t = \frac{\log 5}{\log 4} \approx 1.1610.$$

Problem 3 [5 pts] Let $\log_b A = 4$ and $\log_b B = -3$. Find the value of the following:

$$\log_b \left(\frac{\sqrt{A}}{B^2} \right)$$

Solution Call this number x. Using properties of logarithms,

$$x = \log_b(\sqrt{A}) - \log_b(B^2) = \frac{\log(A)}{2} - 2 \log_b(B) = 2 + 6 = 8.$$

Problem 4 [10 pts] Find the interest earned on $80,000 invested for 20 years at 6.5% interest, compounded semi-annually (twice a year). Round to the nearest cent.
Solution The whole amount you have in the bank is

$$80,000 \cdot 1.0325^{40} \approx 287536.11$$

For the interest earned, subtract the capital. So the answer is

$$287536.11 - 80,000 = 207536.11.$$
Problem 5 [15 pts] Consider the function \(f(x) = x^2 + 4x - 3 \).

a) Find the average rate of change \(f_{2,4} \) for \(f \) between 2 and 4.

b) Write \(f_{2,b} \) for the average rate of change for \(f \) between 2 and \(b \). Find the limit \(L = \lim_{b \to 2} f_{2,b} \).

Solution

a) We use \(f(2) = 9 \) and \(f(4) = 29 \). So

\[
f_{2,4} = \frac{29 - 9}{4 - 2} = 10.
\]

b) First,

\[
f_{2,b} = \frac{f(b) - f(2)}{b - 2} = \frac{b^2 + 4b - 12}{b - 2}.
\]

Factor the numerator, cancel out \(b - 2 \), and you get that the instantaneous rate of change is

\[
\lim_{b \to 2} \frac{b^2 + 4b - 12}{b - 2} = \lim_{b \to 2} b + 6 = 8.
\]

Problem 6 [10 pts] Find (briefly explain your answer) \(\lim_{z \to \infty} \frac{4z^2 + 2z - 1}{3z^2 - 4z + 1} \).

Solution The degree of the numerator (= 2) is the same as that of the denominator, and the coefficients of the highest powers are 4 and 3, respectively. So the limit is \(\frac{4}{3} \).

Problem 7 [8 pts] Let \(f(x) = \begin{cases} 4 - x^2 & \text{if } x < 1 \\ x + 2 & \text{if } 1 \leq x < 5 \\ x - 2 & \text{if } 5 \leq x \end{cases} \)

Find the following limits. Write DNE for a limit that does not exist.

a) \(\lim_{x \to 1^-} f(x) = 3 \)

b) \(\lim_{x \to 1^+} f(x) = 3 \)

c) \(\lim_{x \to 1} f(x) = 3 \)

d) Find all points \(x \) where \(f(x) \) is not continuous.

Solution Plotting this function may help to see what is going on, see above.

d) \(f(x) \) is continuous at all points \(x \) except at \(x = 5 \). Note that for \(x = 1 \), both one-sided limits agree with \(f(1) = 3 \), so \(f(x) \) is continuous there. All other \(x \)-values besides 1 and 5 are using only one (polynomial) formula for \(f(x) \), so \(f(x) \) is continuous there.
Problem 8 [15 pts] Suppose $G(t)$ is the number of US households with an iGadget. Assume $G(t)$ is modeled with an exponential law,

$$G(t) = Ce^{kt}.$$

Suppose $G(0) = 5,000$ in the year 2010 (at time $t = 0$). Four years later, $G(t)$ has increased to 9,000.

a) Find the values of the constants C and k. Give exact answers (no decimal fractions).

b) In what year will the number of US households with an iGadget be 1 million, assuming $G(t)$ keeps following the same law? Round your answer to one digit after the decimal point.

Solution

a) We get $C = 5,000$ from $t = 0$. Now substitute $t = 4$ and $G(4) = 9,000$. Solve this for k by taking logarithms to get

$$k = \frac{\ln(9/5)}{4} = \frac{\ln 1.8}{4}.$$

b) We need to use the values for C and k from part a) and solve $G(t) = 1,000,000$ for t. This gives

$$200 = e^{kt}$$

We take logarithms to get $\ln 200 = kt$. Divide by k to get

$$t = \frac{\ln 200}{k} = \frac{4 \ln 200}{\ln 1.8} \approx 36.1$$

(so the year is approximately 2046).

Problem 9 [10 pts] Below is a graph of real gross domestic product $GDP(t)$ of the United States in billions of 2006 dollars (source: Federal Reserve St. Louis).
Estimate the average rate of change per year of $GDP(t)$ between 2010 and 2014. Round the answer to one digit after the decimal point.

Solution We have to read the values of GDP off the graph. This is of course not very accurate, we’ll just say

$$GDP(2010) \approx 14,600$$
$$GDP(2014) \approx 15,800$$

$$GDP_{2006,2010} = \frac{15800 - 14600}{2014 - 2010} = 300.$$

This rate of change is in billions of dollars per year.