Lec. 13: 2-11-09

1. Review

2. Application to viscous slot flow (VSF)

Review

We solved VSF with a force balance: pressure ~ viscous
then we derived the general con. eqns (mass & mom)

Cons. of mass
1. Check a flow
2. Compute one velocity component & then others
3. Relate velocity scales & length scales
Cons. of mom
1. Check a flow
2. Compute pressure given velocity
3. Solve for a flow.

Solution method
1. Physics: State the problem
2. Math: Develop a mathematical statement \(\text{(Cons. laws)} \), \(\text{(BC, simplifications)} \)
3. Physics: Approximate
4. Math: Solve
5. Physics: Check & interpret
Viscous slot flow (§9.4)

1. State problem

Compute flow rate Q' per unit width in long, thin slot with constant pressure gradient.

To compute flow rate, need velocity.
To compute velocity, solve cons. of mom.

\[
\begin{align*}
H &= 0.01 \text{ m} \\
L &= 1 \text{ m} \\
-\frac{\partial p}{\partial x} &= 150 \text{ Pa/m} \\
\text{Glycerin} &:
\begin{align*}
\mu &= 1.5 \text{ Pa·s} \\
\rho &= 1300 \text{ kg/m}^3 \\
v &= 1.2 \times 10^{-3} \text{ m}^2/\text{s}
\end{align*}
\end{align*}
\]
2. Write math statement

x-mom.

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + \nu \frac{\partial u}{\partial y} \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \]

unsteady, advective, pressure, viscous, inertial

Boundary conditions: \(u = 0 \) at \(y = 0, H \) (no slip)
3. Approximate

\[\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + v \frac{\partial u}{\partial y} + \frac{w}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + \nu \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^2 u}{\partial z^2} \right) \]

Compare terms

\[\frac{\nu \frac{\partial^2 u}{\partial y^2}}{\nu \frac{\partial^2 u}{\partial x^2}} \sim \sqrt{\frac{h}{L^2}} = (\frac{L}{H})^2 = (\frac{1m}{0.01m})^2 \]

\[= 10^4 \]

Neglect \(\nu \frac{\partial^2 u}{\partial x^2} \) with respect to \(\nu \frac{\partial^2 u}{\partial y^2} \)
Examine inertia

\[\frac{u \partial u}{\partial x} \sim \frac{u^2}{\nu} = \frac{U H}{L} \frac{H}{L} \to \text{Expect this to be small} \]

\[\uparrow \]

Reynolds number

Compare pressure of \(y \)-viscous, keep both

\[-\frac{1}{\rho} \frac{\partial p}{\partial x} \sim \nu \frac{\partial^2 u}{\partial y^2} \]

\[\nu \frac{U}{H^2} \sim -\frac{1}{\rho} \frac{\partial p}{\partial x} \]

\[U \sim -\frac{H^2 \frac{\partial p}{\partial x}}{\rho \nu} = \frac{-h^2 \frac{dp}{dx}}{\mu \frac{dx}{dx}} = \frac{(0.01 \text{m})^2}{1.5 \text{Re} \cdot s} (150 \text{Pa/m}) \]

\[= 0.01 \text{ m/s} \]

\[\frac{U H}{\sqrt{L}} = \frac{(0.01 \text{m/s})(0.01 \text{m})^2}{(1.2 \times 10^{-3} \text{ m}^2/\text{s})(1 \text{m})} \sim 10^{-3} \]