1. If \(f(x) = \frac{1}{x^2} \) find \(f'(x) \) directly from the definition of derivative.

2. Let \(f(x) = \begin{cases} x^2 & x \in \mathbb{Q} \\ 0 & x \in \mathbb{Q}^c \end{cases} \). Show that \(f \) is differentiable at \(x = 0 \) and find \(f'(0) \).

3. Let
\[f_s(x) = \lim_{h \to 0} \frac{f(x + h) - f(x - h)}{2h} \]
(sometimes called the symmetric derivative of \(f \) at \(x \)).

a) If \(f \) is differentiable at \(x \) show that \(f'(x) = f'_s(x) \).

b) Show by example that \(f'_s(x) \) may exist even if \(f \) is not differentiable at \(x \).