20.4 Acceptance–Rejection Method

The acceptance–rejection method is predicated on the notion of majorization [7]. Suppose we want to sample from a complicated probability density \(f(x) \) that is majorized by a simple probability density \(g(x) \) in the sense that \(f(x) \leq cg(x) = h(x) \) for all \(x \) and some constant \(c > 1 \). If we sample a deviate \(X \) distributed according to \(g(x) \), then we can accept or reject \(X \) as a representative of \(f(x) \). John von Neumann suggested making this decision based on sampling a uniform deviate \(U \) and accepting \(X \) if and only if \(U \leq f(X)/h(X) \). This procedure gives the probability of generating an accepted value in the interval \((x, x + dx) \) as proportional to

\[
g(x)dx \frac{f(x)}{h(x)} = \frac{1}{c} f(x)dx.
\]

In other words, the density function of the accepted deviates is precisely \(f(x) \). The fraction of sampled deviates accepted is \(1/c \).

As we have seen in Example 20.2.1, generating exponential deviates is computationally quick. This fact suggests exploiting exponential curves as majorizing functions in the acceptance–rejection method [2]. On a log scale,

![Figure 20.1. Exponential Envelopes for Two Beta Densities](image)

\(\text{Beta}(1, 3) \) and \(\text{Beta}(2, 3) \) distributions.
an exponential curve is a straight line. If a density \(f(x) \) is log-concave, then any line tangent to \(\ln f(x) \) will lie above \(\ln f(x) \). Thus, log-concave densities are ideally suited to acceptance-rejection sampling with piecewise exponential envelopes. Commonly encountered log-concave densities include the normal, the gamma with shape parameter \(\alpha \geq 1 \), the beta with parameters \(\alpha \) and \(\beta \geq 1 \), the exponential power density, and Fisher’s \(z \) density. The reader can easily check log concavity in each of these examples and in the three additional examples mentioned in Problem 5 by showing that \(\frac{d^2}{dx^2} \ln f(x) \leq 0 \) on the support of \(f(x) \).

A strictly log-concave density \(f(x) \) defined on an interval is unimodal. The mode \(m \) of \(f(x) \) may occur at either endpoint or on the interior of the interval. In the former case, we suggest using a single exponential envelope; in the latter case, two exponential envelopes oriented in opposite directions from the mode \(m \). Figure 20.1 depicts the two situations. With different left and right envelopes, the appropriate majorizing function is

\[
h(x) = \begin{cases}
 c_l \lambda_l e^{-\lambda_l (m-x)} & x < m \\
 c_r \lambda_r e^{-\lambda_r (x-m)} & x \geq m.
\end{cases}
\]

Note that \(h(x) \) has total mass \(c = c_l + c_r \). To minimize the rejection rate and maximize the efficiency of sampling, we minimize the mass constants \(c_l \) and \(c_r \). Geometrically this is accomplished by choosing optimal tangent points \(x_l \) and \(x_r \). The tangency condition for the right envelope amounts to

\[
\begin{align*}
 f(x_r) &= c_r \lambda_r e^{-\lambda_r (x_r-m)} \\
 f'(x_r) &= -c_r \lambda_r^2 e^{-\lambda_r (x_r-m)}.
\end{align*}
\] (2)

These equations allow us to solve for \(\lambda_r \) as \(-f'(x_r)/f(x_r)\) and then for \(c_r \) as

\[
c_r(x_r) = -\frac{f(x_r)^2}{f'(x_r)} e^{-\frac{f'(x_r)}{f(x_r)}(x_r-m)}.
\]

Finding \(x_r \) to minimize \(c_r \) is now a matter of calculus. A similar calculation for the left envelope shows that \(c_l(x_l) = -c_r(x_l) \).
Example 20.4.1 \textit{(Exponential Power Density).} This exponential power density

\[f(x) = \frac{e^{-|x|^\alpha}}{2\Gamma(1 + \frac{1}{\alpha})}, \quad \alpha \geq 1, \]

has mode \(m = 0 \). For \(x_r \geq 0 \) we have

\[\lambda_r = \alpha x_r^{\alpha - 1} \]
\[c_r(x_r) = \frac{e^{(\alpha - 1)x_r^\alpha}}{2\Gamma(1 + \frac{1}{\alpha})\alpha x_r^{\alpha - 1}}. \]

The equation \(\frac{d}{dx} c_r(x) = 0 \) has solution \(-x_l = x_r = \alpha^{-1/\alpha} \). This allows us to calculate the acceptance probability

\[\frac{1}{2c_r(x_r)} = \Gamma\left(1 + \frac{1}{\alpha}\right)\alpha^{-\frac{1}{\alpha}}e^\frac{1}{\alpha} - 1, \]

which ranges from 1 at \(\alpha = 1 \) (the double or bilateral exponential distribution) to \(e^{-1} = .368 \) as \(\alpha \) tends to \(\infty \). For a normal density \((\alpha = 2) \), the acceptance probability reduces to \(\sqrt{\pi/2e} \approx .76 \). In practical implementations, the acceptance-rejection method for normal deviates is slightly less efficient than the polar method.