Chapter 5

16. (a) Define \(g \) by

\[
g(x) = \int_a^x f'(t) \, dt.
\]

Then \(g \) is absolutely continuous and \(g' = f' \) a.e. by Theorem 63. It follows that \(h = f - g \) has zero derivative a.e., and, for any \(x > y \), we have

\[
h(x) - h(y) = \int_y^x f'(t) \, dt - f(x) + f(y) \geq 0
\]

by Proposition 51, so \(h \) is increasing.

(b) Let \(\varepsilon > 0 \) be given and set \(\eta = \varepsilon/(b-a) \). Then set

\[
I = \{ [x, x+h] : |f(x) - f(x+h)| < \eta h \}.
\]

Then \(I \) is a Vitali covering of the set on which \(f' = 0 \), so, for a given \(\delta > 0 \), there is a finite collection \(\{ [x_n, x_n+h_n] \} \) of disjoint intervals from \(I \) such that the sums of their lengths is at least \([a,b] - \delta \). We write them in increasing order (as in the proof of Lemma 62). It follows that

\[
\sum (f(x_n + h_n) - f(x_n)) < \eta \sum h_n \leq \eta (b-a) = \varepsilon.
\]

Setting \(y_0 = a \) and \(y_k = x_{k-1} + h_{k-1} \), we infer that

\[
\sum (f(x_k) - f(y_k)) = f(b) - f(a) - \sum (f(x_n + h_n) - f(x_n)) > f(b) - f(a) - \varepsilon.
\]

(c) For each \(n \), set \(E_n = \{ x \in (a,b) : f'(x) > 1/n \} \). We shall show that \(mE_n = 0 \). Since \(\{ x \in (a,b) : f'(x) \neq 0 \} = \cup E_n \), it will follow that \(f' = 0 \) a.e. as desired.

Let \(\eta > 0 \) be given and let \(n \) be a given positive integer. Then Property (S) gives a finite collection of disjoint intervals \(\{ I_k \} \) with \(I_k = [x_k, y_k] \) for \(x_k \) and \(y_k \) satisfying

\[
a < x_1 < y_1 < x_2 < \cdots < b,
\]

and

\[
\sum \ell(I_k) > (b-a) - \frac{\eta}{2}, \quad \sum f(y_k) - f(x_k) < \frac{\eta}{2n}.
\]

Proposition 51 then gives

\[
\int_{E_n \cap \cup I_k} f' \leq \int_{\cup I_k} f' = \sum \int_{I_k} f' \leq \sum f(y_k) - f(x_k) < \frac{\eta}{2n}.
\]

But

\[
\int_{E_n \cap \cup I_k} f' \geq \frac{1}{n} m(E_n \cap \cup I_k),
\]

and

\[
m(E_n \cap \cup I_k) = m(E_n) - m(E_n \sim \cup I_k) \geq m(E_n) - m([a,b] \sim \cup I_k) \geq m(E_n) - \frac{\eta}{2}.
\]
It follows that
\[\int_{E_n \cap \cup I_k} f' \geq \frac{1}{n} m(E_n) - \frac{\eta}{2n}. \]
Hence
\[\frac{1}{n} m(E_n) - \frac{\eta}{2n} < \frac{\eta}{2n}, \]
so \(mE_n < \eta \). Since \(\eta \) is arbitrary, it follows that \(mE_n = 0 \).

(d) Let \(\varepsilon \) and \(\delta \) be given. For each integer \(j \), set
\[F_j = \sum_{n=1}^{j} f_n, \quad G_j = f - F_j. \]
Now choose \(j \) so that \(G_j(b) < \varepsilon / 2 \). Since \(F_j' = \sum_{n=1}^{j} f'_n \), it follows that \(F_j \) is also singular. Hence, from part (b), there is a finite collection of disjoint intervals \([y_k, x_k]\) with \(\sum y_k - x_k < \delta \) and
\[\sum F_j(x_k) - F_j(y_k) > F_j(b) - F_j(a) - \varepsilon / 2 \geq f(b) - f(a) - \varepsilon. \]
(Note that \(f(a) \geq F_j(a) \).) Also,
\[f(x_k) - f(y_k) = F_j(x_k) - F_j(y_k) + G_j(x_k) - G_j(y_k) \geq F_j(x_k) - F_j(y_k) \]
because \(G_j \) is a sum of increasing functions, so it’s also increasing. It follows that
\[\sum f(x_k) - f(y_k) > f(b) - f(a) - \varepsilon, \]
so \(f \) satisfies Property (S) and hence is singular.

(e) Let \(\langle r_i \rangle \) be an enumeration of the rational numbers, define
\[f_i(x) = \begin{cases} 0 & \text{if } x < r_i, \\ 2^{-i} & \text{if } x \geq r_i. \end{cases} \]
then \(f_i \) is increasing and \(f'_i = 0 \) everywhere except at \(r_i \), so each \(f_i \) is singular. We then set \(f = \sum f_i \). By part (d), \(f \) is singular. To see that \(f \) is strictly increasing, let \(x < y \). Then there is a rational number \(r_j \) in the interval \((x, y)\), so \(f(y) - f(x) \geq 2^{-j} > 0 \), so \(f \) is strictly increasing.

20. (a) Let \(\varepsilon > 0 \) be given and set \(\delta = \varepsilon / M \) (assuming without loss of generality that \(M > 0 \)).
If \(\{ (x_i, x'_i) \} \) is a collection of nonoverlapping intervals with
\[\sum |x'_i - x_i| < \delta, \]
then
\[\sum |f(x'_i) - f(x_i)| \leq \sum M |x'_i - x_i| = M \sum |x'_i - x_i| < M \delta = \varepsilon, \]
so \(f \) is absolutely continuous.

(b) \(\implies \): Since \(f \) satisfies a Lipschitz condition, we have
\[|f'(x)| = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h} \leq M \]
because \((f(x + h) - f(x))/h \leq M \).
\(\iff \): Suppose \(|f'| \leq M \). Then Corollary 64 implies that
\[f(x) - f(y) = \int_{y}^{x} f'(t) \, dt \]
for any $x > y$. Hence

$$|f(x) - f(y)| \leq \int_y^x |f'| \leq \int_y^x M = M|x - y|.$$

(c) Suppose $|D^+ f| \leq M$. Define g and h by $g(x) = f(x) + Mx$ and $h(x) = f(x) - Mx$. Then $D^+ g \geq 0$ so g is increasing and $D^+ h \leq 0$ so h is decreasing. If $x > y$, it follows that

$$f(x) - f(y) = g(x) - g(y) - M(x - y) \geq -M(x - y)$$

and

$$f(x) - f(y) = h(x) - h(y) + M(x - y) \leq M(x - y).$$

Combining these two inequalities gives $|f(x) - f(y)| \leq M|x - y|$.

21. (a) Since O is open, we can write it as the union of disjoint open intervals I_n. Since g is increasing, $g^{-1}[I_n]$ is an open interval, which we denote by (a_n, b_n). Then $I_n = (g(a_n), g(b_n))$, so

$$m(I_n) = g(b_n) - g(a_n) = \int_{a_n}^{b_n} g'(t) \, dt = \int_{g^{-1}[I_n]} g'(x) \, dx.$$

It follows that

$$m(O) = \sum m(I_n) = \int_{\bigcup g^{-1}[I_n]} g'(x) \, dx = \int_{g^{-1}[O]} g'(x) \, dx.$$

(b) For each positive integer n, let $H_n = \{ x : g'(x) > 1/n \}$. We shall show that $E_n = g^{-1}(E) \cap H_n$ has measure zero. Since $H = \bigcup H_n$, it follows that $g^{-1}(E) \cap H$ also has measure zero.

Hence, we fix n and let $\varepsilon > 0$ be given. Then there is an open set O such that $E \subset O$ and $mO < \varepsilon/n$. Setting $O_n = g^{-1}[O] \cap H_n$, we have

$$\frac{\varepsilon}{n} > mO = \int_{g^{-1}[O]} g' \geq \int_{O_n} g' \geq \frac{1}{n} m(O_n).$$

It follows that $m(O_n) < \varepsilon$ and hence, because $E_n \subset O_n$, $mE_n < \varepsilon$. Since $\varepsilon > 0$ is arbitrary, it follows that $mE_n = 0$.

(b) From Proposition 28, there is an F_σ set, E_1, and a set E_0 with measure zero such that $E = E_0 \cup E_1$. Then

$$F = g^{-1}[E_0] \cap H \bigcup g^{-1}[E_1] \cap H.$$

From part (a), $g^{-1}[E_0] \cap H$ is measurable. In addition $g^{-1}[E_1]$ is a Borel set (by problem 3.26) so it’s measurable, and H is measurable because g' is measurable by virtue of Theorem 52, Theorem 54 and Lemma 60. It follows that $g^{-1}[E] \cap H$ is also measurable.

Part (a) also implies that, for any closed set C, we have

$$mC = (d - c) - mO = \int_a^b g' - \int_{g^{-1}[O]} g' = \int_{g^{-1}[C]} g'$$

for $O = [c, d] \sim C$. (This set O may be open or it may be the union of an open set with a one- or two-point set. This second possibility isn’t a problem because points have measure zero.) If S is an arbitrary F_σ set, then we have $S = \bigcup C_n$, with each C_n closed and $C_n \subset C_{n+1}$, so

$$mC_n = \int_{g^{-1}[C_n]} g'.$$
Applying Proposition 22 (with $E_n = [c, d] \sim C_n$) shows that $mS = \lim mC_n$ and the monotone convergence theorem (with $f_n = \chi_{g^{-1}[C_n]}$) implies that

$$\lim \int_{g^{-1}[C_n]} g' = \int_{g^{-1}[S]} g',$$

and hence

$$mS = \int_{g^{-1}[S]} g'$$

for any F_n, set S. Hence

$$mE = mE_1 = \int_{g^{-1}[E_1]} g'.$$

But $g' = 0$ on $g^{-1}[E_1] \sim H$ and $m(g^{-1}[E_0] \cap H) = 0$, so

$$mE = \int_{g^{-1}[E_1] \cap H} g' = \int_F g'.$$

(d) First, $f \circ g$ is the composition of a measurable function with a continuous function, so it's measurable, and we showed in part (b) that g' is measurable.

To prove the integral equality, we first suppose that f is a simple function. Then $f = \sum a_i\chi_{E_i}$ for some finite number of (nonzero) constants a_i and disjoint measurable sets E_i. It follows in this case that

$$\int_c^d f(y) \, dy = \sum a_i mE_i = \sum a_i \int_a^b \chi_{E_i}(g(x))g'(x) \, dx = \int_a^b f(g(x))g'(x) \, dx.$$

In general f is the limit of an increasing limit of simple functions f_n. It follows that $\langle (f_n \circ g)g' \rangle$ is an increasing sequence of functions, so the Monotone Converge Theorem shows that

$$\int_c^d f(y) \, dy = \int_a^b f(g(x))g'(x) \, dx$$

in this case as well.

25. (a) $\varphi''(t) = p(p-1)(a+tb)^{p-2}b^2$, which is nonnegative if $1 \leq p < \infty$ and nonpositive if $0 < p \leq 1$. Corollary 68 completes the proof.

(b) If $p > 1$, then $\varphi'' > 0$. It follows that φ' is strictly increasing. Now let $x < y$ be given, and set

$$\psi(t) = \varphi[t(y + (1-t)x)] - t\varphi(y) - (1-t)\varphi(x)$$

as in the proof of Proposition 67. We see that ψ' is strictly increasing and (as in that proof), we can't have $\psi' > 0$ on the whole interval $(0,1)$. It follows that ψ is initially strictly decreasing, then is zero at one point (the differentiability of ψ' implies that ψ' is continuous), and is positive after that, so it can't be zero anywhere in the interval $(0,1)$. Therefore φ is strictly convex. A similar argument applies if $0 < p < 1$.

Chapter 6

2. Set $M_0 = \|f\|_\infty$. then

$$\|f\|_p = \left(\int |f|^p \right)^{1/p} \leq \left(\int M_0^p \right)^{1/p} = M_0.$$

It follows that

$$\lim \|f\|_p \leq M_0.$$
On the other hand, if $M < M_2$, then $m\{x : |f(x)| > M\} = \varepsilon$ is positive, so

$$\int |f|^p \geq M^p \varepsilon,$$

so

$$\|f\|_p \geq M \varepsilon^{1/p}.$$

Since $\varepsilon^{1/p} \to 1$ as $p \to \infty$, it follows that

$$\lim\|f\|_p \geq M.$$

But $M < M_0$ is arbitrary, so

$$\lim\|f\|_p \geq M_0.$$

It follows that $\lim\|f\|_p = M_0$.

8. (a) Set $t = p \ln a$ and $s = q \ln b$, so $a = e^{t/p}$ and $b = e^{s/q}$. Since e^x is a convex function of x, it follows that

$$ab = e^{(t/p) + (s/q)} \leq \frac{e^t}{p} + \frac{e^s}{q} = \frac{a}{p} + \frac{b}{q}.$$

Since e^x is strictly convex, it follows that equality holds if and only if $t = s$, which means $a^p = b^q$.

(b) Without loss of generality, $\|f\|_p$ and $\|g\|_q$ are positive. Set $F = f/\|f\|_p$ and $G = g/\|g\|_q$. Then Young’s inequality implies that

$$\int |F||G| \leq \frac{1}{p} \int |F|^p + \frac{1}{q} \int |G|^q = \frac{1}{p} + \frac{1}{q} = 1.$$

It follows that

$$\int |fg| = \left(\int |F||G| \right) \|f\|_p \|g\|_q \leq \|f\|_p \|g\|_q.$$

If equality holds, then we must have $|F|^p = |G|^q$ a.e. and hence $\alpha|f|^p = \beta|g|^q$ a.e.

(c) If $0 < p < 1$, then $q < 0$. Let us set $P = 1/p$ and $Q = 1/(1 - p)$ so that $\frac{1}{P} + \frac{1}{Q} = 1$. Then we take $\alpha = (ab)^{P}$ and $\beta = b^{-p}$. Young’s inequality gives

$$\alpha \beta \leq \frac{\alpha^{P}}{P} + \frac{\beta^{Q}}{Q}.$$

Since $q = -pQ$, it follows that

$$a^p \leq pab - \frac{p}{q} b^q,$$

so (after dividing both sides by p and then adding b^q/q to both sides)

$$ab \geq \frac{a^p}{p} + \frac{b^q}{q}.$$

(d) (We follows the proof of part (b) with the change from Young’s inequality) Without loss of generality, $\|f\|_p$ and $\|g\|_q$ are positive. Set $F = f/\|f\|_p$ and $G = g/\|g\|_q$. Then Young’s inequality implies that

$$\int |F||G| \geq \frac{1}{p} \int |F|^p + \frac{1}{q} \int |G|^q = \frac{1}{p} + \frac{1}{q} = 1.$$

It follows that

$$\int |fg| = \left(\int |F||G| \right) \|f\|_p \|g\|_q \geq \|f\|_p \|g\|_q.$$