RECEPTOR KINASE SIGNALING IN PLANT DEVELOPMENT

Philip W. Becraft

Zoology and Genetics and Agronomy Departments, Iowa State University, Ames, Iowa 50011; e-mail: becraft@iastate.edu

Key Words RLK, signal, transduction, phosphorylation

Abstract The Arabidopsis genome sequence has revealed that plants contain a much larger complement of receptor kinase genes than other organisms. Early analysis of these genes revealed involvement in a diverse array of developmental and defense functions that included gametophyte development, pollen-pistil interactions, shoot apical meristem equilibrium, hormone perception, and cell morphogenesis. Amino acid sequence motifs and binding studies indicate that the ectodomains are capable of binding, either directly or indirectly, various classes of molecules including proteins, carbohydrates, and steroids. Genetic and biochemical approaches have begun to identify other components of several signal transduction pathways. Some receptor-like kinases (RLKs) appear to function with coreceptors lacking kinase domains, and genome analysis suggests this might be true for many RLKs. The KAPP protein phosphatase functions as a negative regulator of at least two RLK systems, and in vitro studies suggest it could be a common component of more. Whether plant signaling systems display a modularity similar to animal systems remains to be determined. Future efforts will reveal unknown functions of other RLKs and elucidate the relationships among their signaling networks.

CONTENTS

INTRODUCTION ... 164
THE EVOLUTION OF PLANT RLKs .. 165
 RLKs in Plants Versus Animals .. 165
 Families of Plant RLKs .. 165
DEVELOPMENTAL FUNCTIONS OF PLANT RLKs 167
 Meristem Development .. 167
 Pollen/Pistil Interactions .. 168
 Hormone Signaling ... 169
 Gametophyte Development .. 170
 Cell Morphogenesis and Differentiation 171
 Organ Shape .. 172
 Organ Abscission ... 172
 Somatic Embryogenesis .. 173
RLK SIGNALING PATHWAYS ... 174
INTRODUCTION

Receptor protein kinases (RPKs) are important mediators of paracrine signaling in metazoans. The advent of the *Arabidopsis* genome sequence revealed a surprisingly extensive array of receptor-like kinase (RLK) genes. Although no functional information is available for the majority of these RLKs, different members of this family are known to function in various aspects of development and plant defense. This review provides an overview of receptor kinases and their signal transduction systems that function in plant development.

Receptor kinases contain a protein kinase that is modulated in response to a stimulus. Historically, the first receptor kinases identified were integral plasma membrane proteins containing a single transmembrane domain. Such proteins contain an extracellular receptor domain (ectodomain) and a cytoplasmic protein kinase domain (Figure 1). Thus many proteins that perform receptor functions and have protein kinase activity are not considered in the receptor kinase class. This review considers only the single-pass transmembrane type of RPKs. The two major classes of RPKs show different substrate specificity in the kinase domain. Receptor tyrosine kinases (RTKs) phosphorylate tyrosine residues, whereas serine/threonine kinase receptors (STKRs) phosphorylate serine and threonine residues. Plant genomes encode a large number of proteins with the predicted topologies of receptor kinases but for which receptor function has not been demonstrated; such proteins are referred to as RLKs.

The dogma for RPK function is that they exist in the membrane as inactive monomers (Becraft 1998). Ligand binding induces dimerization, which brings the intracellular kinase domains into proximity and allows them to transphosphorylate and activate one another. There are exceptions to this general model. For example, several plant RLKs are multimers in their inactive form (Giranton et al. 2000, Trotochaud et al. 1999) (discussed below). One appears to function through an intramolecular kinase activity (Schulze-Muth et al. 1996). Additionally, some RLK proteins have aberrant kinase domains that might be inactive (Barre et al. 2002, Valon et al. 1993; X. Cao & P.W. Becraft, unpublished). Thus the actual mode of action for each RLK cannot be assumed but must be demonstrated on an individual basis.

The first plant RLK was identified in maize using degenerate polymerase chain reaction primers to the protein kinase domain (Walker & Zhang 1990). Subsequently, several RLKs were isolated from *Arabidopsis* and *Brassica* (Chang et al. 1992, Goring & Rothstein 1992, Kohorn et al. 1992, Stein et al. 1991, Walker 1993). The *Brassica* S-locus receptor-like kinase (SRK) was the only one for which a function could be hypothesized by virtue of its association with the
self-incompatibility locus. Nonetheless, their discovery was significant because it was not previously clear whether such signaling mechanisms would exist in plants. Many had assumed that because of the plant cell wall, most plant cell communication would occur via plasmodesmata or small molecules such as hormones.

THE EVOLUTION OF PLANT RLKs

RLKs in Plants Versus Animals

Genomic sequence analysis revealed that Arabidopsis contains 417 genes encoding RLKs (Shiu & Bleecker 2001b). This compares with 43 (40 RTKs and 3 STKRs) in Caenorhabditis elegans (Plowman et al. 1999), 25 (20 RTKs and 5 STKRs) annotated in Drosophila melanogaster (FlyBase 1999), and 70 (58 RTKs and 12 STKRs) in humans (Massagué 1998, Robinson et al. 2000, Smith et al. 1997). In addition to the large number of RLK genes in plants, many of the RLK transcripts are alternatively spliced (Bassett et al. 2000, Giranton et al. 1995, Kumar & Trick 1994, Stein et al. 1991, Tobias & Nasrallah 1996), adding even more complexity. In animals, receptor kinases function predominantly as growth factor receptors, regulating developmental processes and homeostasis. Plant RLKs are known to function in development, hormone perception, and pathogen response, although this list is likely to grow as more are studied.

A major distinction between receptor kinases in animals and plants is the prevalence of STKRs in plants versus RTKs in animals. In mammals, there are 20 classes of RTKs based on ectodomain sequences (Plowman et al. 1999), whereas the TGFβ receptor family represents the only class of STKRs. In contrast, all known plant RLKs contain serine/threonine kinase consensus sequences. However, at least two appear to be dual specificity kinases. PRK1 (pollen receptor-like kinase1) autophosphorylates on serine and tyrosine residues (Mu et al. 1994) and SERK (somatic embryogenesis receptor-like kinase) phosphorylates serines, threonines, and tyrosines (Shah et al. 2001b,c). Yeast similarly contains kinases with only serine/threonine consensus sequences, yet 30 of 119 were capable of phosphorylating tyrosine residues (Zhu et al. 2000). Thus it is possible that more plant RLKs might also have tyrosine kinase activity, again highlighting the necessity to characterize the biochemical activity of each RLK.

Families of Plant RLKs

A recent analysis of kinases revealed that all known plant RLKs are of monophyletic origin in a clade that contains Pelle cytoplasmic kinases of animals (Shiu & Bleecker 2001b). The clade also contains a large number of cytoplasmic plant kinases [receptor-like cytoplasmic kinases (RLCKs)]. Interestingly, animal RTKs form a distinct lineage from plant RLKs, suggesting that different kinases were independently recruited to function as receptor kinases in animals and plants. Most plant RLKs are members of distinct families, some quite extensive. There was a
strong tendency for proteins that grouped together by kinase relatedness to also have similar ectodomains, indicating that most existing families underwent expansion after the initial event that fused the kinase and ectodomains (Shiu & Bleecker 2001a,b).

Sequences for RLK genes have been reported as ESTs (expressed sequence tags) for over two dozen plant species. To date there have been no reports from any plant of a class of RLK that does not have a closely related member in Arabidopsis. There are over 21 different classes of Arabidopsis RLK ectodomains. Several select examples are shown in Figure 1. The most common extracellular motif is the leucine-rich repeat (LRR), present in over half the Arabidopsis RLKs (Shiu & Bleecker 2001a,b). LRRs are a common signal transduction motif thought to be involved in protein-protein interactions (Kobe & Deisenhofer 1994); they are not found on any animal receptor kinases. There are at least 8 classes of LRR ectodomains with different numbers and arrangements of LRRs, some interspersed with other sequences (Shiu & Bleecker 2001a,b).

The second largest class of ectodomains contains lectin motifs (Barre et al. 2002; Hervé et al. 1996, 1999). This class includes 42 members of the lectin-receptor kinases (LecRLKs), with an ectodomain similar to legume lectins (Barre et al. 2002, Shiu & Bleecker 2001a). Amino acid substitutions in the putative monosaccharide-binding site suggest that LecRLKs might not bind simple sugars as do true legume lectins (Barre et al. 2002, Hervé et al. 1999). A B-lectin, or agglutinin motif, is present in the ectodomain of the 40 RLKs containing the cysteine-rich S-domain (Shiu & Bleecker 2001a). The S-domain is found on the Brassica SRK involved in pollen self-incompatibility and is similar to the S-locus glycoprotein (SLG) (Stein et al. 1991). SRKs also have a PAN motif (Shiu & Bleecker 2001a). PAN domains function in protein-protein interactions or protein-carbohydrate interactions and are found in the ectodomain of several animal receptors, but not RPKs (Tordai et al. 1999). Other motifs suggestive of carbohydrate binding include a chitinase domain in CHRK1 (chitinase-related receptor-like kinase) (Y.S. Kim et al. 2000, Shiu & Bleecker 2001a), a thaumatin domain (Osmond et al. 2001, Shiu & Bleecker 2001a, Wang et al. 1996), and a lysin domain (Bateman & Bycroft 2000, Shiu & Bleecker 2001a). Extensin motifs also suggest interactions with cell walls (Shiu & Bleecker 2001a,b).

Several other extracellular motifs are predicted to be involved in protein interactions. Wall-associated kinases (WAKs) all contain epidermal growth factor (EGF) repeats (He et al. 1999, Kohorn et al. 1992) in addition to various other motifs such as collagen, neurexin, and tenascin, similar to extracellular matrix protein motifs of metazoans (He et al. 1999). The CRINKLY4 (CR4) family contains cysteine-rich repeats found in tumor necrosis factor receptor (TNFR) (Becraft et al. 1996) and a putative RCC1 propeller domain (McCarty & Chory 2000).

The DUF26 domain, also called CRR (cysteine-rich repeat), contains four conserved cysteines with a C-X8-C-X2-C signature (Chen 2001; Shiu & Bleecker 2001a,b). This motif is found in at least 42 Arabidopsis RLKs (Chen 2001; Czernic et al. 1999; Du & Chen 2000; Ohtake et al. 2000; Shiu & Bleecker 2001a,b;
Takahashi et al. 1998), appears to be specific to plants, and has an unknown function (Apweiler et al. 2001). Other plant-specific domains with unknown functions include proline-rich motifs, as well as CrRLK1-like (Schulze-Muth et al. 1996; Shiu & Bleecker 2001a,b) and LRK10-like (Feuillet et al. 1998; Shiu & Bleecker 2001a,b) ectodomains.

Interestingly, of all the extracellular motifs found in plant RLKs, only the EGF motif is also found in RPKs of animals. This, in combination with the divergent lineages of plant and animal RPK kinase domains, supports the notion that receptor kinases arose independently in plants and animals.

DEVELOPMENTAL FUNCTIONS OF PLANT RLKs

From the handful of RLKs with known functions, it is clear they are involved in diverse processes. Several others show differential expression patterns that suggest additional functions (summarized in Table 1). RLKs with genetically defined functions are considered in detail below.

Meristem Development

Shoot apical meristems contain a population of stem cells that divide to replace cells incorporated into differentiated structures. Proper meristem function requires a balance between stem cell proliferation and cell differentiation. The CLAVATA1

<table>
<thead>
<tr>
<th>RLK</th>
<th>Tissue/inducer</th>
<th>RLK type</th>
<th>Species</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>LePRK1, 2</td>
<td>Pollen</td>
<td>LRR</td>
<td>Lycopersicon esculentum</td>
<td>(Muschietti et al. 1998)</td>
</tr>
<tr>
<td>LTK1, 2, 3</td>
<td>Endosperm</td>
<td>LRR</td>
<td>Z. mays</td>
<td>(Li & Wurtzel 1998)</td>
</tr>
<tr>
<td>RKF1</td>
<td>Flowers</td>
<td>LRR</td>
<td>A. thaliana</td>
<td>(Takahashi et al. 1998)</td>
</tr>
<tr>
<td>SbRLK1</td>
<td>Mesophyll</td>
<td>LRR</td>
<td>Sorghum bicolor</td>
<td>(Annen & Stockhaus 1999)</td>
</tr>
<tr>
<td>RLK4</td>
<td>SAM, lateral root</td>
<td>S-domain</td>
<td>A. thaliana</td>
<td>(Coello et al. 1999)</td>
</tr>
<tr>
<td>RPK1</td>
<td>ABA</td>
<td>LRR</td>
<td>A. thaliana</td>
<td>(Hong et al. 1997)</td>
</tr>
<tr>
<td>OsTMK</td>
<td>GA</td>
<td>LRR</td>
<td>O. sativa</td>
<td>(van der Knaap et al. 1999)</td>
</tr>
<tr>
<td>NTS16</td>
<td>Pollination</td>
<td>atypical</td>
<td>N. tabacum</td>
<td>(Li & Gray 1997)</td>
</tr>
<tr>
<td>LRRPK</td>
<td>Light (repressor)</td>
<td>LRR</td>
<td>A. thaliana</td>
<td>(Deeken & Kaldenhoff 1997)</td>
</tr>
<tr>
<td>INRPK1</td>
<td>Photoperiod (short day)</td>
<td>LRR</td>
<td>Ipomoea nil</td>
<td>(Bassett et al. 2000)</td>
</tr>
<tr>
<td>SARK</td>
<td>Senescence</td>
<td>LRR</td>
<td>Phaseolus vulgaris</td>
<td>(Hajouj et al. 2000)</td>
</tr>
</tbody>
</table>

aSAM, shoot apical meristem; ABA, abscisic acid; GA, gibberelic acid.

bThe N terminal appears to contain either a very small receptor domain or just a membrane anchor.
(CLV1) gene in Arabidopsis functions in maintaining shoot apical meristem equilibrium by inhibiting proliferation; clv1 mutants have abnormally large meristems because stem cell proliferation outpaces differentiation (Clark et al. 1993). The increase in meristem size produces secondary effects including altered phyllotaxy, increased floral organ numbers, and the club-shaped siliques from which the name CLAVATA derives. CLV1 encodes a RLK and is expressed in the corpus region of the meristem (Figures 1, 2) (Clark et al. 1997). The ectodomain contains 23 LRRs, and the cytoplasmic kinase domain autophosphorylates on serine residues (Stone et al. 1998, Williams et al. 1997). In vitro phosphorylation of an inactive mutant CLV1 kinase by wild-type indicates that autophosphorylation occurs intramolecularly (Williams et al. 1997). CLV1 exists in plant extracts as a 185-kDa disulfide-linked multimer (Trotochaud et al. 1999). CLV1 protein fails to accumulate in clv2 mutants, suggesting that CLV1 is intrinsically unstable and requires the presence of the receptor-like CLV2 protein for stability (Jeong et al. 1999) (see below). Thus it is likely that CLV2 protein is a subunit of a CLV1 heteromeric receptor.

OsLRK1 was isolated from rice and shows 55% amino acid identity with Arabidopsis CLV1 (C. Kim et al. 2000). This gene is expressed in growing regions of the shoot, and antisense suppression caused the production of extra floral organs, a phenotype reminiscent of clv1. Thus CLV1 function may be conserved between monocots and dicots.

Pollen/Pistil Interactions

The Brassica SRK functions in stigmatic cells for pollen recognition in the sporophytic self-incompatibility system (Goring et al. 1993, Nasrallah et al. 1994). Self-incompatibility is a mechanism that promotes outcrossing and involves an active rejection of self-pollen. This phenotype is controlled by the haplotype of a complex locus called the S-locus (Nasrallah 1997). The stigma rejects pollen produced by any plant carrying the same S haplotype. For example, the stigma of a S6S9 plant rejects pollen produced by any plant carrying the S6 or S9 haplotype but accepts pollen from plants carrying different haplotypes.

Two related genes, SRK and SLG (S-locus glycoprotein), are encoded at the S-locus and expressed in the stigma (Nasrallah et al. 1987, Stein et al. 1991). The ectodomain of SRK is similar to SLG, a secreted glycoprotein, and both are highly polymorphic (Stein et al. 1991, Watanabe et al. 1994, Yamakawa et al. 1995). Extracellular motifs include an agglutinin (B-lectin)-like domain, the cysteine-rich S-domain, and a PAN domain (Figure 1).

SRK is the major female determinant of the self-incompatibility phenotype. Mutations in the SRK gene are associated with loss of the self-incompatibility response (Goring et al. 1993, Nasrallah et al. 1994), and suppression of SRK with a transgene suppresses self-incompatibility (Stahl et al. 1998). Transformation of the SRK28 gene into S60 haplotype Brassica rapa conferred a rejection response to S28 pollen (Takasaki et al. 2000). Plants remained receptive to S28 pollen when transformed with SLG28. Similar results were obtained with B. napus...
Cui et al. 2000, Silva et al. 2001). Furthermore, transgenic SRK was shown to contribute to the stigmatic function in the complex dominance relationship between various S haplotypes (Hatakeyama et al. 2001).

SRK encodes a serine/threonine kinase that is targeted to the plasma membrane (Cabrillac et al. 2001, Delorme et al. 1995, Giranton et al. 2000, Goring & Rothstein 1992, Stein et al. 1996, Stein & Nasrallah 1993). The SRK transcript is differentially spliced (Giranton et al. 1995, Stein et al. 1991) and produces both a full-length membrane localized RLK (Delorme et al. 1995, Stein et al. 1996) and a secreted product corresponding to the ectodomain (Giranton et al. 1995). Whether these variant forms are of functional significance is not yet known. In insect cell microsomes, SRK has constitutive kinase activity and autophosphorylates intermolecularly, whereas SRK spontaneously forms oligimers in unpollinated stigmas. Thus SRK protein is intrinsically active (Giranton et al. 2000).

Interestingly, a gene related to SRK is linked to the self-incompatibility locus in Arabidopsis lyrata (Schierup et al. 2001). The RLK encoded by this locus also shows allelic polymorphisms with even higher sequence diversity than in Brassica. This locus does not appear to contain a haplotype structure or encode a SLG ortholog. Yet another RLK, IRK, is genetically linked to the self-incompatibility locus in Ipomoea trifida and expressed in stigmas, consistent with its function in self-incompatibility (Kowyama et al. 1996).

Biochemical evidence suggests that RLKs might also function in compatible pollinations. The tomato LePRK1 and LePRK2 transcripts are specifically expressed in mature pollen and germinating pollen tubes (Muschietti et al. 1998). Both encode LRR RLKs that localize to the plasma membrane of pollen tubes. Labeled LePRK2 was immunoprecipitated from pollen microsomal membranes following incubation with γ-32P-ATP, showing that LePRK2 was actively phosphorylated in these membrane fractions. Addition of stylar extracts inhibited LePRK2 phosphorylation, and sequential additions demonstrated that they could promote the dephosphorylation of LePRK2. This activity was impervious to phosphatase inhibitors and boiling and was not present in leaf extracts. These results suggest that LePRK2 may be involved in pollen-pistil interactions. Expression of another RLK gene, NTS16, is induced in tobacco styles upon pollination (Li & Gray 1997), suggesting that RLKs might function on both sides of compatible pollen-pistil interactions.

Hormone Signaling

The Arabidopsis BRI1 gene was identified in genetic screens for mutants insensitive to exogenous brassinolide (Clouse et al. 1996, Li & Chory 1997). Brassinolide is a type of brassinosteroid, plant steroid hormones that are involved in growth regulation. Brassinosteroids promote cell elongation; deficient plants grow as dwarfs in the light and have a light-grown phenotype in the dark (Li et al. 1996, Szekeres et al. 1996). bri1 mutants are phenotypically similar to plants that have a brassinolide deficiency (Clouse et al. 1996, Li & Chory 1997).
The \textit{BRI1} gene was cloned and found to encode a LRR RLK (Li & Chory 1997). The ectodomain contains 25 LRRs with a unique island of 70 amino acids between repeats 21 and 22 (Figure 1). At least 3 mutant alleles contain lesions in this island, which indicates its functional significance (Friedrichsen et al. 2000, Li & Chory 1997). A BRI1-GFP fusion protein, controlled by the \textit{BRI1} 5' promoter, showed ubiquitous expression and was targeted to the plasma membrane (Friedrichsen et al. 2000).

Phosphoamino acid analysis of autophosphorylated recombinant BRI1 kinase domain showed phosphorylation primarily on serine residues, with a minor amount on threonine (Oh et al. 2000). MALDI-MS analysis of tryptic fragments mapped at least 12 autophosphorylated residues to small peptides. Three sites occurred in the activation segment of the kinase domain. One of the phosphorylation sites occurred within the N-terminal calmodulin-binding protein tag of the recombinant protein. Synthetic peptides from this sequence were used to derive a consensus recognition site that resembled targets of SNF1-related kinases.

A rice dwarf mutant, \textit{d61}, is caused by lesions in a BRI1 homologous gene (Yamamuro et al. 2000). The rice protein contains 22 LRRs, with a 70-amino-acid island between repeats 18 and 19. Similar to \textit{Arabidopsis bri1} mutants, \textit{d61} shows reduced sensitivity to exogenous brassinolide and dwarfism owing to decreased internode elongation and decreased mesocotyl elongation in the dark.

\section*{Gametophyte Development}

\textit{PRK1} was isolated from a petunia pollen tube cDNA library, and RNA gel blot analysis detected \textit{PRK1} transcripts in both ungerminated and germinated pollen (Mu et al. 1994). A transgene containing the ectodomain-coding region in antisense orientation was unable to transmit through the pollen (Lee et al. 1996). The pollen mother cells underwent normal meiosis and produced microspores; however, subsequent development was abnormal, and half the microspores (presumably those carrying the transgene) failed to undergo mitosis, remaining uninucleate and finally aborting.

Surprisingly, the \textit{PRK1} antisense transgene also showed greatly reduced transmission through the female gametophyte (Lee et al. 1996). This was unexpected because \textit{PRK1} expression was thought to be pollen specific and because the \textit{Lat52} promoter used to drive transgene expression was also thought to be pollen specific. Closer examination revealed that \textit{PRK1} transcripts were present in normal ovaries (Lee et al. 1997). Embryo sacs of antisense lines usually undergo normal mitoses, although some arrest after the first or second division. However, nuclear migration, embryo sac maturation, and differentiation are disrupted. Thus \textit{PRK1} is required for postmeiotic development of both male and female gametophytes.

\textit{PRK1} contains 720 amino acids and is detected as a 69-kDa band on immunoblots of petunia microsomal proteins (Mu et al. 1994). The 328-amino-acid ectodomain contains five interspersed LRRs (Figure 1). The sequence of the cytoplasmic kinase domain predicts a serine/threonine kinase; however, it is autophosphorylated on serine and tyrosine residues.
Cell Morphogenesis and Differentiation

The maize CRINKLY4 (CR4) gene is important for a complex array of processes in plant and endosperm development. CR4 is required in the endosperm for aleurone cell fate specification because in cr4 mutants, the fate of the peripheral cell layer switches from aleurone to starchy endosperm (Becraft & Asuncion-Crabb 2000, Becraft et al. 1996). Mutant plants are short, with crinkled leaves that often form graft-like fusions (Becraft et al. 1996). An allelic series showed that CR4 functions preferentially in the epidermis but is required for diverse processes of cellular development throughout the shoot (Jin et al. 2000). Functions include the regulation of cell proliferation, fate, patterning, morphogenesis, and differentiation, all of which suggest that CR4 functions in a growth-factor-like response. Genetic mosaic analysis demonstrated that CR4 acts cell autonomously in leaves, indicating that it does not regulate a secondary intercellular signal (Becraft et al. 2001).

CR4 was cloned by transposon tagging and encodes a RLK (Becraft et al. 1996). CR4 is expressed in the growing regions of the shoot, particularly in the shoot apical meristem and lateral organ primordia (Becraft et al. 2001, Jin et al. 2000). The encoded RLK of 901 amino acids contains a functional serine/threonine kinase in the cytoplasmic domain (Jin et al. 2000). The cysteine-rich ectodomain contains a motif similar to the ligand-binding domain of mammalian tumor necrosis factor receptor (Figure 1), suggesting the ligand for CR4 may be a peptide related to tumor necrosis factor (Becraft et al. 1996). A second motif containing repeats of approximately 37 amino acids may form a RCC1-like propeller structure, another protein interaction motif (McCarty & Chory 2000).

Arabidopsis contains an orthologous gene, ACR4, that is expressed in protodermal cells of the embryo and shoot (Tanaka et al. 2002).

The WAK1 (WALL-ASSOCIATED KINASE1) cDNA was isolated fortuitously and initially called pro25 (Kohorn et al. 1992). Subsequent analysis showed that the WAK1 RLK localized to the plasma membrane and associated tightly with the cell wall (He et al. 1996). WAK1 belongs to a cluster of five related genes (He et al. 1999), and antibodies generated against the WAK1 kinase domain recognize other members of this cluster (Anderson et al. 2001). Thus the wall association represents a collective property of the WAKs. Another key feature of WAKs is an EGF motif in the ectodomain (Figure 1) (He et al. 1999, Kohorn et al. 1992). Other ectodomain sequence motifs specific to different WAKs are related to the metazoan extracellular matrix proteins tenascin, collagen, and neurexin (He et al. 1999).

RNA gel blots detected transcripts of WAK1–3 and WAK5 primarily in leaves and stems, with trace amounts in other tissues (He et al. 1999). WAK4 expression was highest in siliques (He et al. 1999), but RT-PCR also revealed low levels in leaves (Lally et al. 2001). In situ hybridization and promoter::GUS fusions showed WAK1 and WAK2 expression in the shoot apical meristem, expanding leaves, and lateral root meristems (Wagner & Kohorn 2001). The expression patterns were overlapping but distinct. For example, in leaves WAK1 is primarily expressed in the vasculature, whereas WAK2 expression is strongest at the margins, and WAK3 is expressed sporadically.
It has been hypothesized that WAKs may function to link the cell wall to the cytoplasm (He et al. 1996). This link could be purely structural, independent of an additional signaling function, or the link could be an integral part of a putative signaling function, perhaps acting as a tension sensor (Anderson et al. 2001). At least some WAKs are required for normal cell expansion (Lally et al. 2001, Wagner & Kohorn 2001). Antisense suppression of both WAK2 (Wagner & Kohorn 2001) and WAK4 (Lally et al. 2001) caused a dwarf phenotype, the result of a decrease in cell expansion. Leaf, stem, and root cells all showed the effect, with leaf cells being most sensitive to reductions in WAK levels (Lally et al. 2001). In both cases, the antisense transgene included conserved gene sequences and thus would be expected to suppress multiple WAK family members. Therefore, it is not clear which, or how many, WAKs are involved in controlling cell expansion. Inducible antisense expression was used because transgenic plants could not be obtained with the CaMV 35S promoter, most likely indicating that WAKs are essential for viability (Wagner & Kohorn 2001). Induced antisense expression also resulted in sterility, although the basis of this phenotype was not reported (Lally et al. 2001).

WAKs also appear to function in plant defense. WAK1 transcript is pathogen inducible, and WAK1, 2, and 3 are inducible by salicylic acid (He et al. 1998, 1999), a pathogen-induced signaling molecule. WAK1 expression was found to be required for plants to survive on medium containing salicylic acid. Thus WAK1 may function to protect plant cells from their own defense response to pathogens. A WAK2 promoter::GUS reporter is also wound inducible, suggesting other possible functions in plant defense (Wagner & Kohorn 2001).

Organ Shape

The Landsberg erecta ecotype is a popular laboratory strain because of its convenient growth habit. The erecta (er) phenotype includes short, compact inflorescences, thickened stem, short petioles, rounded leaves, and short, thick siliques (Lease et al. 2001a, Torii et al. 1996). Phyllotaxy is unchanged, indicating that the major function of ER is to regulate the ultimate shape of various shoot organs. The cellular basis of this phenotype has not been reported, but presumably some aspect of cell division or cell expansion is affected.

The ER gene was cloned by T-DNA insertional mutagenesis and encodes a LRR RLK (Torii et al. 1996). ER is expressed in the shoot apical meristem and organ primordia (Yokoyama et al. 1998). The ER ectodomain contains 20 LRRs. In the genomic organization of the ER locus, each LRR represents a separate exon. The cytoplasmic kinase domain autophosphorylates on serine and threonine residues in vitro (Lease et al. 2001a).

Organ Abscission

RLK5 was isolated from Arabidopsis by hybridization to the maize ZmPK1 kinase domain (Walker 1993). Subsequent antisense suppression of the gene revealed a function in floral organ abscission; abscission of sepals, petals, and stamens was
prevented or delayed (Jinn et al. 2000). Therefore, RLK5 was renamed HAESA, from a Latin word meaning “to adhere to.” It was not reported whether the morphological differentiation of an abscission zone or just the actual cell separation was blocked.

HAESA is expressed in the abscission zones of floral organs in a developmentally regulated manner (Jinn et al. 2000). Expression coincides with the stages when flowers gain competence to self-pollinate and around the time abscission zones differentiate. HAESA expression is also observed at the sites of leaf attachment to the stem. Arabidopsis leaves do not normally abscise, and the significance of this expression is not known. HAESA protein has 999 amino acids and contains 21 LRRs in the ectodomain (Walker 1993). The protein is localized to the plasma membrane, and the cytoplasmic kinase domain autophosphorylates on serine and threonine residues in vitro (Jinn et al. 2000).

Somatic Embryogenesis

SERK (SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE) was isolated from embryogenic cells of carrot suspension cultures (Schmidt et al. 1997). Embryogenic cells were sorted by morphology and used to construct a cDNA library. Differential screening identified one clone that was expressed in embryogenic but not in non-embryogenic cultures. In situ hybridization showed that SERK was expressed in cells predicted to be embryogenic by morphological criteria, and SERK expression was induced in tissue explants placed in embryogenic culture conditions. Similar results were observed in Arabidopsis (Hecht et al. 2001) and in the monocot Dactylis glomerata L. (Somleva et al. 2000). Cell tracking experiments using a SERK promoter::luciferase reporter construct verified that somatic embryos were indeed derived from SERK-expressing cells (Schmidt et al. 1997). Overexpression increased the embryogenic potential of Arabidopsis cultures, indicating that SERK functions to promote embryogenic competence.

In normal Arabidopsis plants, SERK is expressed in developing ovules (Hecht et al. 2001). In mature ovules, expression is restricted to the embryo sac, where it is expressed in all cells. Following fertilization, SERK is expressed in the endosperm and the zygote, and in embryos through the heart stage, at which time expression ceases. A SERK promoter::GUS reporter was expressed postembryonically in the vasculature. No developmental abnormalities were reported for 35S::SERK transgenic plants, indicating that SERK does not interfere with postembryonic development.

The Arabidopsis SERK1 (AtSERK1) protein contains 625 amino acids. The characteristic ectodomain configuration consists of a leucine zipper motif near the amino terminus just after the signal peptide, five LRRs, and a proline-rich region between the LRRs and transmembrane domain (Figure 1). The proline-rich region contains two copies of a SPP sequence motif found in extensins (Baudino et al. 2001, Hecht et al. 2001, Schmidt et al. 1997). The cytoplasmic domain contains a dual specificity protein kinase that autophosphorylates serines and threonines, with
trace tyrosine phosphorylation (Shah et al. 2001b,c), but strongly phosphorylates tyrosines in myelin basic protein (Shah et al. 2001c). In vitro phosphorylation of an inactive mutant kinase domain by a normal kinase domain indicated that autophosphorylation occurs intermolecularly.

YFP (yellow fluorescent protein)–tagged AtSERK1 localized to the plasma membranes of insect cells and plant protoplasts (Shah et al. 2001a). Yeast two-hybrid analysis showed that the ectodomain of AtSERK1 could homodimerize; FRET (fluorescence resonance energy transfer) analysis of coexpressed AtSERK1-YFP and AtSERK1-CFP (cyan fluorescent protein) indicated a close association of different AtSERK1 molecules in cowpea protoplasts. Deletion of the leucine zipper did not inhibit membrane localization but abolished FRET. These results suggest that AtSERK1 homomultimerizes in plant cells and that multimerization requires the leucine zipper motif. However, the majority of AtSERK1 molecules appeared to be in monomeric form, suggesting that a signal ligand might induce dimerization.

RLK SIGNALING PATHWAYS

The identity of a protein as a RLK implies that it belongs to a signal transduction system. To fully understand the function of the RLK, it is necessary to understand other components of the system, how they interact, the activating signal, and which downstream events it regulates. Genetic and biochemical approaches are beginning to yield information on several RLK signal transduction systems.

Signal Ligands

One of the most important and interesting components of any signal transduction system is the signaling molecule that initiates the response. In the case of RLKs, ligand binding induces RLK activation and downstream signal transduction. Knowing the ligand opens the way to understanding the cells or tissues that are involved in a particular signaling system, as well as the potential for manipulating it for experimental or biotechnological purposes.

CLV3 IS THE LIGAND FOR CLV1

Mutants in the *Arabidopsis CLAVATA3* (*CLV3*) gene showed the same enlarged meristem phenotype as *CLV1*, which places them in the same pathway (Clark et al. 1995). This was further supported with biochemical evidence showing that a 450-kDa active CLV1 complex did not form in *clv3* mutants (Trotochaud et al. 1999). *CLV3* was cloned by transposon tagging and encodes a 96-amino-acid protein (Fletcher et al. 1999). CLV3 is predicted to be secreted and cleaved to produce a 78-amino-acid protein, although it has been speculated that the signal peptide is not actually removed from the protein (Cock & McCormick 2001). The apparent molecular mass of the CLV3 monomer is 6 kDa, but it is present in plant tissues as a 25-kDa multimer (Trotochaud et al. 2000). It is not yet known whether this is a homomeric or heteromeric complex. CLV3 bound to yeast cells expressing CLV1 and CLV2, cofractionated with the active
CLV1 complex in gel filtration chromatography, and coimmunoprecipitated with CLV1 from plant extracts (Trotochaud et al. 2000). That CLV3 binds to CLV1 and is required for the formation of an active complex strongly suggests that CLV3 is the ligand for CLV1. Interestingly, CLV3 did not bind to clv1-10 mutant protein in plants or yeast cells. This allele contains an amino acid substitution in the kinase domain that abolishes kinase activity. These results suggest that activity of the cytoplasmic kinase domain is required for efficient ligand binding by the ectodomain (Trotochaud et al. 2000).

CLV3 is expressed in a small group of central zone cells believed to represent the stem cell population (Figure 2). This expression domain overlaps slightly with the CLV1 expression domain in the corpus layer (Fletcher et al. 1999). Thus stem cell proliferation appears to be regulated by signaling between layers.

CLV3 belongs to a family of related molecules designated CLE (CLA V A TA3/ESR) that contain a conserved stretch of 15 amino acids near the carboxy terminus; all are predicted to be secreted (Cock & McCormick 2001). *Arabidopsis* contains 28 genes of this family. Three maize ESR (embryo surrounding region) proteins also belong to this family. The ESR proteins of unknown function are expressed in the developing maize endosperm surrounding the young embryo (Bonello et al. 2000).

SP11/SCR IS THE LIGAND FOR SRK From genetic evidence, it was long known that the pollen determinant of the *Brassica* self-incompatibility system was encoded by the complex S-locus (Nasrallah 1997 for review). The SCR (S-locus cysteine-rich) gene, also called SP11 (S-locus protein 11), was discovered when sequence analyses of the region containing SRK and SLG revealed a cysteine-rich open reading frame (Schopfer et al. 1999, Suzuki et al. 1999). The encoded protein is similar (or identical) to a previously identified pollen coat protein (PCP), PCP-A1, which inhibits cross pollination when applied to stigmas (Stephenson et al. 1997). SP11/SCR is expressed in anthers and shows a high degree of allelic sequence variation (Schopfer et al. 1999, Takayama et al. 2000). When the *Brassica oleracea* SCR6 allele was transformed into S2 homozygotes, the transgenic plants could no longer pollinate S6 females but were fully fertile as females in the reciprocal cross (Schopfer et al. 1999). Similar results were obtained with *B. rapa* S8 and S9 allele SCR (Shiba et al. 2001). Application of recombinant SCR protein elicited the self-incompatibility response when applied to stigmas of the same haplotype, thereby preventing germination of compatible cross pollen (Kachroo et al. 2001, Takayama et al. 2000). Thus SP11/SCR is the pollen determinant for self-incompatibility.

SP11/SCR is a small protein of 74–83 amino acids, depending on the allele (Schopfer et al. 1999, Takayama et al. 2000). Following cleavage of the signal peptide, the mature SCR/SP11 protein has a relative molecular mass of 5.7 kDa and contains four disulfide bonds among the eight cysteine residues (Takayama et al. 2001). The sequence and arrangements of cysteine disulfide bonds are similar to those of defensins (Bruix et al. 1993, Takayama et al. 2001), small proteins with antimicrobial activity (Broekaert et al. 1995). *Arabidopsis* contains two large families, 114 genes, that encode proteins related to SCR/SP11 (Vanoosthuyse et al.
2001). The SCRL family is most closely related and contains 28 genes. Eighty-six genes show greater similarity to other PCPs, and it is hypothesized that these might represent ligands for other members of the S-domain RLK family.

Because SRK is the female determinant of self-incompatibility, it was suspected that the male determinant would be the ligand for this RLK. Support for this came from the demonstration that PCPs can activate SRK phosphorylation in an in vitro microsomal assay (Cabrillac et al. 2001). Activation occurred in a haplotype-specific manner; PCPs from compatible cross haplotypes did not induce SRK activation, whereas PCPs from self-haplotype pollen did. Direct interaction between SCR and SRK was demonstrated with pull-down experiments and ELISA (Kachroo et al. 2001). An epitope-tagged SRK₈ ectodomain, expressed and purified from tobacco leaves, was able to interact with bacterially expressed SCR₈. Interaction with the self SCR₈ was approximately 10-fold stronger than with the cross haplotype SCR₁₃. SRK₉ ectodomain expressed in silkworm larvae was not able to bind a biologically active SCR/SP11₉, suggesting that plant-specific modifications might be critical for SRK receptor function (Takayama et al. 2001). Finally, chemically synthesized SCR/SP11₈ induced autophosphorylation of SRK₈ in stigmatic plasma membrane fractions; SCR/SP11₈ did not (Takayama et al. 2001). ¹²⁵I-labeled SCR/SP11₈ specifically bound stigmatic microsomal membranes from S₈ homozygotes. Scatchard analysis indicated high- and low-affinity-binding sites with dissociation constants of 1.2 and 32 nM, respectively (Takayama et al. 2001). After chemical cross-linking, SRK immunoprecipitation pulled down the labeled SCR/SP11, as well as SLG. Thus SCR/SP11 binds SRK and activates autophosphorylation.

BRI1 BINDS BRASSINOLIDE

The fact that bri1 mutants are brassinolide insensitive indicates that the BRI1 receptor kinase functions at or downstream of the site of perception (Li & Chory 1997). Brassinolide application triggered pathogen defense responses in rice cells containing a chimeric RLK with the Arabidopsis BRI1 ectodomain fused to the cytoplasmic domain of XA21, a rice pathogen resistance RLK (He et al. 2000). This indicated that BRI1 was directly involved in brassinolide perception and suggested that it might function as a steroid receptor. Arabidopsis membrane fractions bound tritiated brassinolide with a dissociation constant near 10 nM, and the number of binding sites increased in transgenic plants overexpressing BRI1 (Wang et al. 2001). Binding was shown to be specific by competition with unlabeled brassinolide, whereas other steroids competed poorly. Membrane fractions from bri1 mutants with disrupted ectodomains, including substitutions in the 70-amino-acid island, did not bind brassinolide. Anti-GFP antibodies coimmunoprecipitated tritiated brassinolide from extracts of plants expressing a BRI1-GFP fusion protein, demonstrating that BRI1 binds brassinolide directly or as part of a complex. Finally, treatment of Arabidopsis seedlings with brassinolide caused a mobility shift of BRI1 on SDS-PAGE immunoblots, which was reversible with alkaline phosphatase treatment and was not observed in mutants with inactive kinase domains. This suggests that brassinolide induces autophosphorylation of BRI1.
In sum, these results show that BRI1 functions as the site of brassinolide perception. That steroid perception occurs at the plasma membrane is interesting because steroids are able to freely cross membranes. In animals, the best-studied steroid receptors are cytosolic or nuclear (see commentary by Becraft 2001). Steroid responses initiated by membrane receptors are poorly understood, and it will be interesting to see whether they show any similarity to plant steroid perception.

GRP AND PECTIN BIND THE WAK ECTODOMAIN

Two molecules have been identified that bind the ectodomain of WAKs. The first is pectin, a carbohydrate that forms part of the cell wall matrix (Wagner & Kohorn 2001). Pectinase treatment released WAKs from the cell wall fraction, and the anti-pectin antibodies, JIM5 and JIM7, recognized bands of the same mobility as WAK on immunoblots of cell wall–released proteins. The majority of pectin-bound WAK appears to be phosphorylated, as determined by immunoblotting of pectinase-treated cell wall fractions with anti-phosphothreonine antibodies; a band of similar mobility to WAK’s was detected (Anderson et al. 2001). Whether pectin binding causes phosphorylation has not been determined so the functional significance of the interaction between WAK and pectin remains obscure. It is also possible that WAK could modify pectin (Wagner & Kohorn 2001).

The second molecule, an extracellular glycine-rich protein (GRP), was identified in yeast two-hybrid screens with the WAK1 ectodomain (Park et al. 2001, Wagner & Kohorn 2001). AtGRP-3 interacted with WAK1, 3, and 5; WAK1 interacted only with AtGRP-3 and not -2, -4, -6, -7, or -8 (Park et al. 2001). WAK1 coimmunoprecipitated from plant extracts with GRP-3 antibodies, which suggests that the two proteins indeed interact in vivo. In seedling protein extracts, WAK1 is found in two gel filtration chromatography fractions of approximately 200 and 500 kDa, but in protoplast extracts it is present only in the 200-kDa fraction. Following application of AtGRP3 to the protoplasts, WAK1 is again found in both fractions, suggesting that GRP3 induces the formation of a high-molecular-weight WAK1 complex (Park et al. 2001). The functional significance of this complex formation is not yet known but likely represents receptor activation.

Other Components of RLK Signal Transduction Systems

Once activated, RLKs initiate downstream signal transduction pathways leading to cellular responses. This typically involves recruiting proteins to the activated receptor complex, triggering regulatory cascades of protein phosphorylation or other biochemical reactions, finally leading to alterations in gene expression and other cellular functions. Understanding the factors involved, the regulatory interactions among them, and their targets of regulation is essential to understanding RLK function.

CLV1

When plant extracts were size-fractionated by gel filtration, CLV1 was found in two fractions of approximately 185 and 450 kDa (Trotochaud et al.
The 185-kDa complex is present in clv3 mutants and in some alleles of clv1, depending on the lesion (Trotochaud et al. 1999). Therefore, this complex represents the inactive, disulfide-linked multimer mentioned above and is likely made up of CLV1 and CLV2 subunits (Jeong et al. 1999).

CLV2 is a receptor-like protein (RLP) with a LRR-containing predicted ectodomain and a transmembrane domain, but no cytoplasmic kinase domain (Jeong et al. 1999). Although a direct interaction between CLV1 and CLV2 has not yet been reported, genetic and biochemical evidence are consistent with this scenario. Strong clv1 and clv3 alleles are epistatic to clv2 mutants in the shoot apical meristem (Kayes & Clark 1998). Weak clv1 alleles showed allele-specific interactions with clv2; clv1-7, clv2-2 double mutants showed greatly enlarged meristems comparable to strong clv1 mutants. Although the expression of CLV1 transcripts is expanded in clv2 mutants, concomitant with the increase in meristem size (Kayes & Clark 1998), CLV1 protein levels are drastically diminished (Jeong et al. 1999). These data could be explained if CLV2 were a subunit of a heteromeric CLV1 receptor and required for CLV1 protein stability. Whereas CLV1 functions exclusively in the shoot apical meristem, CLV2 has additional functions in organ development (Clark et al. 1993, 1997; Jeong et al. 1999; Kayes & Clark 1998). It is hypothesized that CLV2 heterodimerizes with other RLKs during organ development. A similar function was recently discovered in maize. The fasciated ear2 (fea2) mutant has enlarged female inflorescence meristems, indicating that FAE2 functions to restrict meristem size (Taguchi-Shiobara et al. 2001). The gene was cloned by transposon tagging and encodes a RLP similar to CLV2. The Arabidopsis genome encodes 30 LRR RLPs, suggesting that heterodimers may be a common feature of LRR RLKs (Taguchi-Shiobara et al. 2001).

The 450-kDa fraction appears to represent an active receptor complex because this complex is absent in loss-of-function clv1 and clv3 mutants (Trotochaud et al. 1999). In addition to the 185-kDa disulfide-linked CLV1 multimer, several other components of this complex have been identified. As discussed above, CLV3 is part of the 450-kDa active complex (Trotochaud et al. 2000). ROP, a Rho-like GTPase, is also part of the active CLV1 complex. ROP antiserum detected a 25-kDa band that coimmunoprecipitated with CLV1 from the 450-kDa fraction but not from the 185-kDa fraction. The function of ROP in CLV1 signaling is not known (Trotochaud et al. 1999).

A noteworthy component of the active CLV1 complex is KAPP (kinase-associated protein phosphatase). KAPP is a type 2C protein phosphatase, first isolated by screening an Arabidopsis cDNA expression library for interactions with the cytoplasmic domain of HAESA, then known as RLK5 (Stone et al. 1994). KAPP bound phosphorylated but not dephosphorylated HAESA. The interaction occurred via a region of KAPP called the kinase interaction (KI) domain. Deletion analysis defined a 119-amino-acid region necessary for interaction with RLK kinase domains (Li et al. 1999). The center of this region contains a 52-amino-acid forkhead-associated (FHA) domain. FHA domains mediate interactions with
phosphoproteins in a wide variety of prokaryotes and eukaryotes (Li et al. 2000), and site-directed mutagenesis of conserved FHA residues abolished KAPP interactions with RLKs (Li et al. 1999). Both the Arabidopsis and maize KAPP KI domains interacted in vitro with the same subset of five out of seven diverse RLKs tested (Braun et al. 1997). Interactions have subsequently been reported between KAPP and a number of additional RLKs, including WAK1 (Park et al. 2001); OsTMK, a gibberellin-induced RLK in rice (van der Knaap et al. 1999); and CLV1 (Stone et al. 1998, Trotochaud et al. 1999, Williams et al. 1997)

The KAPP KI domain interacted with phosphorylated CLV1 in filter-binding assays (Stone et al. 1998, Williams et al. 1997) and communoprecipitated with CLV1 antibodies from plant extracts (Stone et al. 1998, Trotochaud et al. 1999). KAPP RNA is expressed throughout shoot apical meristems and in provascular tissue, a distribution that includes, but is not limited to, the CLV1 expression domain (Williams et al. 1997). KAPP was present in a broader range of high-molecular-weight fractions than CLV1, and was not eliminated from the high-molecular-weight fractions in clv1 mutants, which suggests that KAPP interacts with multiple proteins (Trotochaud et al. 1999). Transgenic studies indicate that KAPP functions as a negative regulator of CLV1 signaling. Overexpression of KAPP produced a slight increase in the number of carpels per flower, a phenotype similar to weak clv1 mutants (Williams et al. 1997), whereas cosuppression of the endogenous KAPP transcript led to suppression of the clv1-1 mutant phenotype (Stone et al. 1998).

Two targets of the CLV signal transduction system are the WUSCHEL (WUS) (Schoof et al. 2000) and POLTERGEIST (POL) genes (Yu et al. 2000). pol mutants partially suppress clv1, 2, and 3 mutants but have no phenotypic defects alone. It is hypothesized that they function redundantly with WUS. WUS promotes stem cell proliferation in the shoot apical meristem; wus mutant meristems become depleted of cells (Laux et al. 1996). WUS encodes a homeodomain protein and is expressed in a small group of cells in the interior region of the central zone, just beneath the CLV3 expression domain (Mayer et al. 1998). In clv mutants, the WUS expression domain is expanded, whereas CLV3 overexpression inhibits WUS expression (Brand et al. 2000). Thus CLV signaling inhibits cell proliferation through negative regulation of the WUS gene. A feedback loop from WUS conversely acts as a positive regulator of CLV3 (Brand et al. 2000, Schoof et al. 2000). Overexpression of WUS expands the CLV3 expression domain, and CLV3 is not expressed in wus mutants.

The reciprocal signaling between the peripheral layers and internal cells is analogous to the regulation of cell proliferation in vertebrate limb buds, where FGF8 signals from the apical ectodermal ridge control proliferation of the mesodermal progress zone (Crossley et al. 1996). FGF10 signals back from the mesoderm to the apical ectodermal ridge to stimulate FGF8 expression, forming a feedback loop that maintains the proliferative activity of the limb bud (Ohuchi et al. 1997). However, whereas the ectodermal signals in limb buds act to promote proliferation, CLV3 signaling limits cell proliferation.
Another gene encoded by the S-locus is SLG. Although SLG appears to contribute to the self-incompatibility response, its function is not clear (Cui et al. 2000; Shiba et al. 2000; Takasaki et al. 1999, 2000). Self-compatible mutants that express low levels of SLG showed normal levels of SRK transcript but did not accumulate SRK protein (Dixit et al. 2000). Expression of SRK alone in tobacco resulted in the production of aberrant disulfide-linked SRK aggregates that were prevented by co-expressing SLG and SRK, which suggests that SLG expression might facilitate the processing or accumulation of SRK. These results have yet to be reconciled with the report that because some self-incompatible haplotypes lack SLG, it is dispensable (Suzuki et al. 2000). Furthermore, other studies indicate that genetic transformation with SRK alone was sufficient to confer a self-incompatibility phenotype (Takasaki et al. 2000). One possible explanation is that certain allelic variants of SRK are inherently more stable than others and thus show varying requirements for SLG (Dixit et al. 2000). As mentioned above, SLG coimmunoprecipitated as part of a chemically cross-linked SRK complex, suggesting that SLG may function as a coreceptor with SRK (Takayama et al. 2001). Thus coreceptors might not be limited to LRR RLK complexes.

Several other components of the SRK signal transduction pathway have been identified. KAPP interacts with SRK in filter-binding assays (Braun et al. 1997) but whether this has functional relevance is not yet known. ARC1 (ARM REPEAT CONTAINING1) was identified by screening a yeast two-hybrid library with the SRK cytoplasmic domain (Gu et al. 1998). The interaction required an active SRK kinase domain, suggesting that it was phosphorylation dependent, and the SRK kinase phosphorylated ARC1 in vitro (Gu et al. 1998). The interaction occurred in the carboxy-terminal region of ARC, which contains five ARM repeats, a protein-protein interaction motif (Gu et al. 1998, Mazzurco et al. 2001). ARC1 interacted in yeast two-hybrid assays with all five SRK allelic variants tested and with related RLKs, SFR1, and SFR2; however, whether these latter interactions have biological relevance is unknown (Mazzurco et al. 2001). ARC1 transcript is expressed specifically in stigmatic tissues (Gu et al. 1998). Although the biochemical function of ARC1 is unknown, antisense suppression of ARC1 partially disrupts the self-incompatibility response (Stone et al. 1999). Antisense has no effect on compatible pollinations and overexpression does not affect either incompatible or compatible pollinations. Thus ARC1 is a specific and essential component of the SRK signal transduction pathway and acts as a positive effector of the self-incompatibility response.

Two THIOREDOXIN-H clones, THL1 and THL2, were also isolated in yeast two-hybrid screens with the SRK cytoplasmic domain (Bower et al. 1996). They interact specifically with SRK and not with other RLKs tested (Bower et al. 1996, Mazzurco et al. 2001). SRK interacts with two of the five THIOREDOXIN-H proteins of Arabidopsis (Mazzurco et al. 2001). A kinase-inactive mutant SRK failed to interact with both clones in yeast but did interact with THL1 in vitro, suggesting the interaction may not be phosphorylation dependent. THL1 was weakly phosphorylated by SRK and shown to have thioredoxin activity in vitro (Bower et al.
1996). The interaction required an active catalytic site on THL1 and a specific cysteine residue on SRK, indicating that the interaction involved redox activity (Mazzurco et al. 2001). Although THL2 showed preferential expression in floral tissues, neither was specific to the pistil, suggesting they have additional functions outside SRK signaling (Bower et al. 1996).

Recent evidence indicates that thioredoxin inhibits SRK (Cabrillac et al. 2001). Full-length SRK constitutively autophosphorylates in stigma or insect cell microsomes, but only in response to pollination in intact stigma cells. Addition of soluble stigma extract inhibited autophosphorylation, which suggests that an inhibitor present in stigma cells prevents phosphorylation in the absence of ligand. Depletion of thioredoxin from the extract with affinity resin removed the inhibitor; addition of recombinant THL1 inhibited the in vitro autophosphorylation of SRK. When pollen coat proteins containing SCR/SP11, the SRK ligand, were added to the in vitro phosphorylation reactions in the presence of inhibitory stigma extracts, autophosphorylation was detected, but only when PCPs were isolated from a self-incompatible haplotype relative to the SRK allelic variant. Thus ligand binding overcomes the inhibitory effects of thioredoxin.

The SRK, SLG, and ARC1 proteins are not sufficient to confer self-incompatibility to female Arabidopsis tissues. Transgenic Arabidopsis plants expressing these genes did not block hydration and germination of Brassica pollen of an incompatible haplotype (Bi et al. 2000). Therefore, additional components to this system, present in Brassica, are missing in Arabidopsis.

It was previously hypothesized that the SRK signaling system might regulate an aquaporin protein (Ikeda et al. 1997). An aquaporin gene was tightly linked to, and not transcribed in, a mod mutant that eliminated the self-incompatibility response. One of the early events in pollen germination is hydration, so it was logical to hypothesize that an aquaporin could be important for this process and would be a likely point to block pollen germination in the self-incompatibility response. However, antisense suppression of the aquaporin gene did not inhibit self-incompatibility, and a new γ-ray-induced mod mutation had an intact aquaporin gene expressed at normal levels (Fukai et al. 2001). Therefore, MOD does not correspond to aquaporin, and the product of this gene remains unknown.

BRI1 No proteins that directly interact with BRI1 have been reported, yet several factors that appear to function in BRI1 signal transduction have been identified. An activation-tagging screen for genetic suppressors of the weak bri1-5 mutant yielded brs1-1D (bri1 suppressor1-1Dominant), which dominantly suppresses multiple aspects of the bri1 phenotype (J. Li et al. 2001). Overexpression of BRS1 suppresses the bri1-5 phenotype; a brs1 knockout produced no obvious phenotypic effects, which suggests that this gene may be redundant. Neither the activation-tagged nor overexpressed BRS1 had any affect on the phenotype of wild-type plants. brs1-1D did not suppress the bri1-5 phenotype in a brassinolide-deficient mutant background and only suppressed bri1 alleles with extracellular lesions but not with a deficient kinase domain. Thus brs1-D appears to affect an early step specific to
brassinolide signaling. BRS1 is predicted to encode a secreted carboxy peptidase, and site-directed mutagenesis demonstrated that carboxy peptidase activity is required for suppression of bri1-5. Whether this activity is required for processing of BRI1, another component of BRI1 signal transduction, or another function is not yet known.

A second mutant gene that causes brassinolide insensitivity was recently reported. bin2 (brassinolide insensitive2) is a semidominant gain-of-function mutant. The gene was cloned and found to encode a previously described kinase, ASKη, related to GSK3/SHAGGY (Li & Nam 2002). Overexpression of a wild-type allele recapitulated the bin2 phenotype and enhanced the weak phenotype of bri1-301 mutants, whereas reduced expression of BIN2 suppressed bri1-301. Thus BIN2 acts as a negative regulator of BRI1 signaling. Efforts to demonstrate direct interactions between BRI1 and BIN2 were unsuccessful.

The TRIP-1 gene was isolated by subtractive hybridization as an mRNA induced by brassinolide treatment in bean cell suspension cultures (Jiang & Clouse 2001). Arabidopsis contains two highly related TRIP-1 genes with 90% amino acid identity to one another. TRIP-1 transcript was induced by brassinolide in Arabidopsis cell cultures in the presence of cycloheximide, indicating that protein synthesis was not required. Antisense suppression produced dwarf plants with phenotypes similar to brassinolide deficiency, suggesting that TRIP-1 has a key function in the brassinolide response. The encoded protein of 326 amino acids contains five WD repeats and is similar to TGF-β receptor interacting protein-1 (TRIP-1). TRIP-1 is identical to a translation factor, eIF3-i, which is a conserved component of eIF3 in plants, mammals, and yeast (Burks et al. 2001). This suggests that translational regulation might be a key aspect of brassinolide signaling. TRIP-1 is also a substrate for the TGF-β receptor serine/threonine kinase (Chen et al. 1995), suggesting that phosphorylation might also regulate translational activity.

Biochemical analysis of BRI1 antisense rice plants showed alterations in calcium-dependent protein kinase (CDPK) and MAP kinase activity (Sharma et al. 2001). The activity of a 60-kDa membrane-associated MAP kinase was induced by brassinolide treatment, but activity and brassinolide responsiveness were decreased in BRI1 antisense plants. Conversely, the activity of a 50-kDa cytosolic CDPK decreased with brassinolide treatment and increased in BRI1 antisense plants. On two-dimensional gels, the Ca^{2+}-dependent phosphorylation of several proteins increased in BRI1 antisense plants. Thus BRI1 appears to positively regulate MAP kinase activity and negatively regulate CDPK activity.

Expression of constitutively active and dominant-negative forms of ROP2 causes alterations in photomorphogenic responses and sensitivity to brassinolide, which suggests that ROP may function in the BRI1 signal transduction pathway (H. Li et al. 2001). The possibility that ROP may be a direct signal transducer is intriguing given the demonstrated interaction between ROP and CLV1 (Trotochaud et al. 1999).

PRK1 Yeast two-hybrid screens have identified two factors that interact with PRK1. The first, NeIF2Bβ, shows homology to eIF2Bβ from mammals and yeast
(Park et al. 2000). eIF2Bβ is a subunit of eIF2B, a guanine exchange factor that is an essential component of the translation initiation machinery. Mammalian eIF2B can be regulated by phosphorylation, albeit on the α-subunit (Kleijn et al. 1998). Nonetheless, it suggests the possibility that PRK1 regulates translation. The second factor is KIP1 (kinase-interacting protein1) (Skirpan et al. 2001). Both KIP1 and PRK1 transcripts are specifically expressed in pollen grains. The interaction is much weaker with a kinase-impaired PRK1 bait than with wild-type, suggesting that the interaction is phosphorylation dependent. PRK1 phosphorylates KIP1 in vitro. The function of KIP1 is unknown, but recognizable motifs include an EF hand calcium-binding motif, 9 coiled coils (a protein-protein interaction motif), and 7 tandem repeats of an 11-amino-acid sequence similar to a feature on Tau, a protein involved in microtubule assembly. Given the requirement for PRK1 in gametophytic mitosis, it is intriguing to speculate that PRK1 might signal through KIP1 to regulate the microtubule cytoskeleton in postmeiotic divisions.

ERECTA AGB1 was identified as a possible component of the ER signal transduction pathway in a genetic screen for mutants with phenotypes similar to the er phenotype (Lease et al. 2001b). elk (erecta-like) mutants fell into five complementation groups. elk1 was allelic to the tir3 mutant with reduced sensitivity to the auxin transport inhibitor, N-1-naphthylphthalamic acid (NPA) (Ruegger et al. 1997). The elk4 phenotype was the most similar to er, and double mutants suggest that the two genes function in the same pathway controlling silique development (Lease et al. 2001b). Other organs showed more severe double-mutant phenotypes than either single mutant, which suggests that the genes may function in parallel pathways in leaves and stems. The ELK4 locus was cloned (Lease et al. 2001b) and encodes a previously described heterotrimeric G protein β-subunit AGB1 (Weiss et al. 1994). It remains to be determined how AGB1 fits into the ER pathway, but it does not appear to be a downstream target gene because AGB1 transcript was at nearly normal levels in er mutants and vice versa (Lease et al. 2001b).

SUMMARY AND FUTURE PROSPECTS

Plant genomes encode a much larger complement of receptor kinase-like proteins than other organisms. Post-transcriptional processing further increases the complexity of the “RLKome.” It is evident from the relatively few studied plant RLKs that this class of proteins has many diverse functions that will be revealed only through functional analyses. As such, it is likely that an equally diverse array of signaling pathways will emerge. In mammals, signaling systems are often modular, and many divergent pathways share multiple components. Early indications are that plants similarly have components that function in multiple pathways. KAPP interacts with several RLKs in vitro, and functional analyses indicate it is a negative regulator of at least two pathways. How widespread KAPP function is remains to be determined. Several RLKs, including CLV1 and SRK, may function with coreceptors that lack kinase domains, and genome analysis suggests this
might be a common feature of RLK signaling. Genetic, molecular, and biochemical approaches are identifying components of RLK signaling pathways. The functions of several are known, but how most of these factors fit into the respective signaling systems remains to be determined. Rapidly developing tools of genomics and proteomics promise rapid advancement of this field.

ACKNOWLEDGMENTS

Thanks to the Becraft lab for critical reading of the manuscript and helpful discussions. Workshops sponsored by the Functional Genomics of Plant Phosphorylation consortium (NSF award 9975808) are extremely valuable sources of insight and information. Research in the author’s lab is supported by grants from the US DOE Energy Biosciences Program and National Science Foundation.

The Annual Review of Cell and Developmental Biology is online at http://cellbio.annualreviews.org

LITERATURE CITED

Bi YM, Brugiere N, Cui Y, Goring DR, Rothstein SJ. 2000. Transformation of Arabidopsis with a Brassica SLO/SRK region and

Clark SE, Running MP, Meyerowitz EM. 1995. *CLAVATA3* is a specific regulator of shoot and floral meristem development affecting the same processes as *CLAVATA1*. *Development* 121:2057–67

Hecht V, Vielle-Calzada JP, Hartog MV,

Salicylic acid induces the expression of a number of receptor-like kinase genes in Arabidopsis thaliana. Plant Cell Physiol. 41:1038–44

Stein JC, Dixit R, Nasrallah ME, Nasrallah JB. 1996. SRK, the stigma-specific S locus receptor kinase of Brassica, is targeted to the plasma membrane in transgenic tobacco. *Plant Cell* 8:429–45

Identification by PCR of receptor-like protein kinases from *Arabidopsis* flowers. *Plant Mol. Biol.* 37:587–96
Tordai H, Banyai L, Patthy L. 1999. The PAN module: the N-terminal domains of plasminogen and hepatocyte growth factor are homologous with the apple domains of the prekallikrein family and with a novel domain found in numerous nematode proteins. *FEBS Lett.* 461:63–67

Figure 1 Protein domain configurations of several select receptor-like kinases.
Figure 2 Diagram of proposed signaling pathways for SRK (A) and CLV1 (B). RLKs are shown in dark blue, co-receptors in light blue, positive effectors are green, negative effectors are red, and factors with unknown functions are yellow. Downstream targets of the signaling pathway are in black. Components in gray remain to be verified. Arrows and blocking symbols do not necessarily denote a specific number of steps because in most cases the number of steps between events is unknown. Dotted lines represent hypothetical relationships.