Optimal buffer size and dynamic rate control for a queueing system with impatient customers in heavy traffic. *

Arka P. Ghosh† and Ananda P. Weerasinghe‡
Iowa State University
February 19, 2010

Abstract

We address a rate control problem associated with a single server Markovian queueing system with customer abandonment in heavy traffic. The controller can choose a buffer size for the queueing system and also can dynamically control the service rate (equivalently the arrival rate) depending on the current state of the system. An infinite horizon cost minimization problem is considered here. The cost function includes a penalty for each rejected customer, a control cost related to the adjustment of the service rate and a penalty for each abandoning customer. We obtain an explicit optimal strategy for the limiting diffusion control problem (the Brownian control problem or BCP) which consists of a threshold-type optimal rejection process and a feedback-type optimal drift control. This solution is then used to construct an asymptotically optimal control policy, i.e. an optimal buffer size and an optimal service rate for the queueing system in heavy traffic. The properties of generalized regulator maps and weak convergence techniques are employed to prove the asymptotic optimality of this policy. In addition, we identify the parameter regimes where the infinite buffer size is optimal.

Abbreviated Title: Controlled queues with reneging.

1 Introduction.

In this article, we address a stochastic control problem associated with a single server Markovian queueing system with impatient customers under heavy traffic conditions. Control features of the system allow the system manager to dynamically control the arrival and/or the service rates depending on the current state of the system. They also allow the manager to block incoming customers by choosing an appropriate ‘buffer size’ of the queue (or the size of the ‘waiting room’ for the waiting customers). The customers may abandon the queue if their service is not completed before an exponential ‘impatience clock’ rings. The system manager is faced with an infinite horizon

*AMS 2000 subject classifications: Primary 60K25, 68M20, 60J70, 90B22, 90B35. Keywords and phrases: Controlled queueing networks, Heavy traffic analysis, Asymptotic optimality, Optimal buffer size, Optimal rate control, Customer abandonment, Reneging, Singular control, Brownian control problem (BCP), Hamilton-Jacobi-Bellman (HJB) equation.

†Research supported by NSF grant DMS-0608634.
‡Research supported by U. S. Army Research Office grant W911NF0510032.
discounted cost minimization problem where three types of costs are involved: A penalty for each blocked (rejected) customer, a control cost related the adjustment of the arrival/service rates as well as a penalty for each abandoning customer. A linear holding cost can also be included in our setup without any significant change in the analysis (see Remark 2.5). We obtain a Brownian control problem (BCP) as the heavy traffic limit of the controlled queueing system and derive an explicit optimal strategy of the BCP, which consists of an optimal feedback-type drift control and a threshold-type rejection policy. This optimal policy enables us to propose a candidate policy for the queueing system in heavy traffic. We establish the asymptotic optimality of this candidate policy using generalized regulator maps (see [27, 32] and references therein) and weak convergence methods.

The idea of using Brownian system as a heavy traffic approximation of a queueing system has a long history and we refer the reader to [34] for a comprehensive list of references. In a series of recent articles [31, 30, 26, 27], Ward and co-authors address heavy traffic analysis of queueing networks with impatient customers. These articles address the issue of performance evaluation of such queueing systems. For general queueing systems (with or without customer abandonment) there are numerous articles that address the issue of system optimization ([5, 8, 9, 6, 14, 15, 18, 3, 29, 32] is a partial list of such articles). Ours is also a system optimization problem for a queueing system with customer abandonment. The results of this paper are close to those of [13] (in terms of methodology used for solving the BCP) and [32] (in terms of the model and the cost structure), which we compare and contrast with the results of this article below.

In [13], the authors considered a stochastic processing system with variable arrival and service rates and general customer rejection policy (variable buffer size) for a long-term average cost minimization problem. A similar control problem for fixed buffer size was addressed in [2]. For such a model, an optimal policy which consists of a feedback-type drift control and an optimal buffer size was obtained in [13], but no asymptotically optimal policy for the corresponding queueing problem was derived there. Both of these articles ([2] and [13]) did not address the issue of customer impatience. In this work, we consider a Markovian queueing model with impatient customers with similar controls and address the infinite horizon discounted cost problem. In addition to solving the BCP, we interpret the solution of the BCP to construct an admissible control policy for the queueing model and prove its asymptotic optimality. Unlike the value function of [13], the value function of the BCP in our problem depends on the initial conditions and the corresponding Hamilton-Jacobi-Bellman (HJB) equation is a truly nonlinear second order equation. In [32], an optimal admission control problem was considered for a queueing system with general arrival and service processes and impatient customers. The model in [32] does not allow for dynamically controlled arrival and service rates; it is assumed that the arrival and service rates are constants (and not controlled) and satisfy a suitable heavy traffic condition. In the current work, we introduce state dependent arrival and service rates using a convenient time-change representation for jump-Markov processes (see [10]) and allow these rates to be controlled by the system manager. Such rate-control mechanisms are analogous to ‘marginally state dependent’ rates (see [21]) or ‘thin controls’ (in [1], [4]). Under appropriate scaling, this leads to a controlled drift $u(\cdot)$ in the BCP. In fact, the BCP considered in this article reduces to the BCP of [32] when the control $u(\cdot)$ is identically zero. The only control in [32] is the admission control policy which is analogous to our rejection policy (or the choice of buffer size). The threshold-type optimal admission control derived in [32] indeed provides a finite optimal buffer size for their queue. The rejection process $U(\cdot)$ in our BCP represents the cumulative number of rejected customers, and is allowed to be any adapted, non-decreasing RCLL (right-continuous with left-limits) process, which includes all the threshold-type rejection processes.
A novel feature of the analysis in this paper is that it addresses both issues of drift control as well as rejection control policy. In addition, we establish a necessary and sufficient condition for the finiteness of the optimal buffer size. More specifically, if \(p > 0 \) denotes the revenue lost per rejection, \(\gamma > 0 \) is the customer reneging rate, \(\beta > 0 \) represents the cost for each reneging customer (such as a refund given to these dissatisfied customers (as in [32])) and \(\delta > 0 \) is a discount factor (can be thought of as the continuously compounded bank interest rate), then let \(p_0 = \frac{\beta \gamma}{(\delta + \gamma)} \). For each \(p > 0 \), we derive an optimal feedback type drift control \(u^*_p \) in Theorem 3.8. We show that when \(0 < p < p_0 \), there is an optimal rejection policy associated with a finite buffer size \(b^*_p \). We also prove that when \(p \geq p_0 \), optimal rejection process is identically zero (i.e. not rejecting any customer is optimal). Note that when \(0 < p < p_0 \), [32] also obtained a finite optimal buffer size and it conjectures that the condition \(0 < p < p_0 \) is necessary for having a finite buffer-size. Here we establish this claim even in the presence of a drift control. Our analysis shows that the value of the threshold \(p_0 \) is independent of the control cost \(C(\cdot) \) (see (3.14)). In the light of the results in [32], our work concludes that the introduction of a drift control does not affect the threshold value \(p_0 \). However, when \(0 < p < p_0 \), the value of the finite optimal buffer length \(b^*_p \) is different from that of [32] due to the effect of optimal control \(u^*(\cdot) \).

The paper is organized as follows: Section 2 has the problem description including the details of the queueing system, the cost structure for the control problem as well as the main result of the article. In Section 3 we discuss the approximating BCP and obtain its explicit solution. The BCP addressed here is a singular stochastic control problem and it can be read independent of the other sections. Section 4 begins with a short discussion of generalized regulator maps, which will be used later in the proofs of the theorems that follow. The rest of this section is devoted to proving the main theorem. Throughout this article, all the processes are assumed to be in the space \(D([0,\infty), \mathbb{R}^k) \) (≡ The space of right continuous functions with left limits) for some \(k \geq 1 \) and we use “ \(\Rightarrow \) ” to represent the weak convergence of the processes in the usual Skorokhod topology.

2 Problem Description and the Main Result.

2.1 Model Formulation.

We consider a sequence of queueing systems in heavy traffic indexed by \(n \geq 1 \). Each system is equipped with adjustable arrival and/or service rates and possibly a finite buffer size. The job of a “controller” is to choose these state-dependent rates as well as the buffer size so that an infinite horizon discounted cost structure (see (2.14)) is minimized. In addition, customers waiting in the queue may abandon the system and this cannot be controlled. Thus, the control structure here is represented by \((\lambda, \mu, b) \equiv (\lambda = \{\lambda_n(\cdot)\}, \mu = \{\mu_n(\cdot)\}, b_n) \), where \(\lambda_n, \mu_n \) are functions of the current queue-length representing the state dependent arrival and service rates satisfying some admissibility conditions (see Definition 2.2). The buffer size \(b_n \) of the \(n \)-th system is chosen so that \(b_n \equiv \sqrt{nb} \) (\(b = \infty \) is allowed) for some \(b > 0 \). If \(b_n \) is not an integer, then \(\lfloor b_n \rfloor = \text{the integer-part of } b_n \) is the “effective” buffer size: the customers are allowed to join the queue as long as the current queue-length is less than (or equal to) \(b_n \), and are rejected if the queue-length is greater than \(b_n \).

We assume that all the processes defined for the queueing system are defined on some common probability space. For \(n \geq 1 \), the dynamics of the \(n \)-th system under a control \((\lambda, \mu, b) \) is described below. We assume that initially the queue is empty. The arrival time for the first customer is
exponentially distributed with rate $\lambda_n(0)$ and the server immediately starts serving this customer. At this instant, the queue-length is 1 and the required service time to complete service to the first customer and the time until the second customer arrives is assumed to be independent and exponentially distributed with rates $\mu_n(1)$ and $\lambda_n(1)$ respectively. In addition, this customer can abandon the queue if the service is not completed within a random amount of time (patience time), which is assumed to be exponentially distributed with rate γ_n. We call a time instant an “event-time” if at that instant, either a new customer arrives or an existing customer leaves because of service completion or abandonment. At any “event-time”, if the current queue-length is k, where $k \geq 0$, we assume the following memoryless structure: (remaining) inter-arrival time for the next customer, (remaining) service time for the current customer being served, and (remaining) patience time for each of the existing customers in the queue are independent and distributed as exponential random variables with rates $\lambda_n(k) I_{\{k<\sqrt{nb}\}}$, $\mu_n(k) I_{\{k>0\}}$, and γ_n, respectively. In addition, if the buffer size $b_n = \sqrt{nb}$ is finite, then every incoming customer is rejected if the buffer is full and no customer is rejected if $b_n = \infty$ is chosen. One can also think of the value b as an admission control threshold where the customers are allowed to join the queue only if the queue length is less than b (See [32]). We assume that the server does not idle unless the buffer is empty (queue-length is zero). The sequence in which available jobs in the queue are served is irrelevant because of our Markovian structure. Figure 1 describes the dynamics of the n-th queueing system ($n \geq 1$) at any time point $t \geq 0$.

A more rigorous description of our model is as follows: Let $Q_n(t)$ denote the queue-length process at time t, $t \geq 0, n \geq 1$. We assume $Q_n(0) = 0$ and $\{Q_n(t) : t \geq 0\}$ is a jump-Markov process with state space \mathbb{Z}^+ (set of all non-negative integers) and jump intensities are given by

$$q^n_{k,k+1} = \lambda_n(k) I_{\{k<\sqrt{nb}\}}, \quad q^n_{k,k-1} = \mu_n(k) I_{\{k>0\}} + k\gamma_n, \quad k \in \mathbb{Z}^+,$$

and $q^n_{k',k''} = 0$ for all other values of $k', k'' \in \mathbb{Z}^+$. It is well-known (see Chapter 6 of [20]) that such a process can be represented as a linear combination of time-changed independent Poisson processes:

$$Q_n(t) = Y_n^A \left(\int_0^t \tilde{\lambda}_n(Q_n(s)) ds \right) - Y_n^S \left(\int_0^t \tilde{\mu}_n(Q_n(s)) ds \right) - Y_n^R \left(\int_0^t \gamma_n Q_n(s) ds \right), \quad t \geq 1,$$

where $\tilde{\lambda}_n(k) = \lambda_n(k) I_{\{k<\sqrt{nb}\}}$, $\tilde{\mu}_n(k) = \mu_n(k) I_{\{k>0\}}$ are the “effective” rates, and Y_n^A, Y_n^S, Y_n^R are independent Poisson processes with intensities 1. We will use (2.1) as the definition of the queue-length process in our model (see [35] for similar queueing models with state dependent rates).
2.2 Heavy traffic and admissible controls.

First we state our assumption on the reneging rates. See [32] for a similar assumption.

Assumption 2.1 There exists $\gamma > 0$ such that

$$n\gamma_n \to \gamma > 0 \text{ as } n \to \infty.$$

We assume that the system operates under heavy-traffic (i.e. the long-run-average arrival and service rates are equal), under any admissible control policy (λ, μ, b) that the controller chooses.

Definition 2.2 (Admissible Controls) A control $(\lambda, \mu, b) \equiv (\{\lambda_n(\cdot)\}, \{\mu_n(\cdot)\}, b)$ is called admissible for the queueing system if $\lambda_n(\cdot), \mu_n(\cdot)$ are nonnegative, continuous functions defined on $[0, \infty)$ and $b \in (0, \infty]$ such that for some $\lambda > 0$ and $\mu > 0$ the following holds:

(i)

$$\sup_{x \geq 0} |\lambda_n(x) - \lambda| \to 0, \quad \sup_{x \geq 0} |\mu_n(x) - \mu| \to 0 \text{ as } n \to \infty. \tag{2.2}$$

(ii) For $n \geq 1$, define

$$u_n(x) = \sqrt{n}(\mu_n(\sqrt{n}x) - \lambda_n(\sqrt{n}x)), \text{ for each } x \geq 0, \tag{2.3}$$

then $\{u_n(\cdot)\}$ is a sequence of uniformly Lipschitz continuous functions (with a Lipschitz constant κ_u) and for some function $u(\cdot)$,

$$\sup_{x \geq 0} |u_n(x) - u(x)| \to 0 \text{ as } n \to \infty. \tag{2.4}$$

Note that the assumption in (2.2) clearly implies that for some positive constants c and c',

$$\sup_{x \geq 0} [\lambda_n(x) \lor \mu_n(x)] \leq c \text{ and } \inf_{x \geq 0} [\lambda_n(x) \land \mu_n(x)] > c', \text{ for } n \geq n_0 \text{ (for a suitable } n_0 \geq 1).$$

However, the lower bound c' on the rates given above and their continuity guarantee that the representation of queue-length in (2.1) is possible (see [20]), and hence we will simply take $n_0 = 1$ without loss of generality and thus the following holds:

For some positive constants c and c'

$$\sup_{n \geq 1} \sup_{x \geq 0} [\lambda_n(x) \lor \mu_n(x)] \leq c, \quad \inf_{n \geq 1} \inf_{x \geq 0} [\lambda_n(x) \land \mu_n(x)] > c' > 0. \tag{2.5}$$

From Assumption 2.1 it follows that $\gamma_n \to 0$ as $n \to \infty$ and hence the customer abandonment rates do not influence the long-run average departure rate. Parts (ii) and (iii) of the Definition 2.2 imply that the system is in “heavy traffic”, i.e.

$$\lambda = \mu. \tag{2.6}$$

As it is often the case in heavy-traffic analysis of queueing systems, (because of an underlying functional central limit theorem) the diffusion scaled queue-length

$$\hat{Q}_n(\cdot) = \frac{Q_n(n \cdot)}{\sqrt{n}}, \text{ for } n \geq 1, \ t \geq 0, \tag{2.7}$$

stabilizes. This is the reason for studying the asymptotic behavior of the system and the associated cost criterion (see (2.14) below) under the diffusion scaling.
Remark 2.3 (a) Since we study the system under diffusion scaling, we consider buffer sizes of the order \sqrt{n} for the n-th queueing system. It is possible to consider a more general situation, with the buffer sizes b_n for the n-th queue and it can be shown that any “reasonable” policy will have to satisfy $b_n/\sqrt{n} \to b \in (0, \infty]$ along some subsequence (see Lemmas 4.7 and 4.8 of [32]). To reduce the notational overhead, we simply take $b_n = \sqrt{nb}, b \in (0, \infty]$ in this paper.

(b) For a concrete example of rates satisfying all our admissibility conditions in Definition 2.2, consider the following class of rates:

$$\lambda_n(x) = \lambda + \frac{1}{\sqrt{n}}u_1\left(\frac{x}{\sqrt{n}}\right) + \frac{1}{n}v_1^n\left(\frac{x}{\sqrt{n}}\right), \mu_n(x) = \lambda + \frac{1}{\sqrt{n}}u_2\left(\frac{x}{\sqrt{n}}\right) + \frac{1}{n}v_2^n\left(\frac{x}{\sqrt{n}}\right), \quad x \geq 0, \quad n \geq 1,$$

where $\lambda > 0$, $u_1(\cdot), u_2(\cdot)$ are any two Lipschitz continuous functions with Lipschitz constants $\kappa_1 > 0$, and $\kappa_2 > 0$ respectively. Furthermore, $\sup_{x \geq 0} v_i^n(x) = o(\sqrt{n})$ for $i = 1, 2$.

(c) Note that in our setup, any admissible policy will affect the system behavior (in diffusion scale) marginally, via $u_n(\cdot)$. We call this the “marginal drift function” and its limiting version $u(\cdot)$ as the “asymptotic marginal drift function” for a given (λ, μ, b). From the properties of the marginal drift functions in (2.3) -(2.4) in Definition 2.2, we conclude that $u(\cdot)$ is also a Lipschitz continuous function with the same Lipschitz constant κ_u.

2.3 Scaled Processes.

First we define the lower- and upper-“reflection” processes: For $n \geq 1$

$$L_n(t) = \mu_n(0) \int_0^t I_{\{Q_n(s) = 0\}} ds, \quad U_n(t) = \lambda_n(\sqrt{n} b) \int_0^t I_{\{Q_n(s) \geq \sqrt{n} b\}} ds, \quad t \geq 0. \quad (2.8)$$

This combined with (2.1), yields that

$$Q_n(t) = \left[Y_n^A \left(\int_0^t \tilde{\lambda}_n(Q_n(s)) ds \right) - \int_0^t \tilde{\lambda}_n(Q_n(s)) ds \right]$$

$$- \left[Y_n^S \left(\int_0^t \tilde{\mu}_n(Q_n(s)) ds \right) - \int_0^t \tilde{\mu}_n(Q_n(s)) ds \right] - \left[Y_n^R \left(\int_0^t \tilde{\gamma}_n Q_n(s) ds \right) - \int_0^t \tilde{\gamma}_n Q_n(s) ds \right]$$

$$- \int_0^t [\mu_n(Q_n(s)) - \lambda_n(Q_n(s)) + \gamma_n Q_n(s)] ds + L_n(t) - U_n(t), \quad (2.9)$$

for all $n \geq 1$ and $t \geq 0$. Next, we define the following diffusion scaled Poisson processes:

$$\hat{Y}_n^A(t) = \frac{1}{\sqrt{n}} (Y_n^A(nt) - nt), \hat{Y}_n^S(t) = \frac{1}{\sqrt{n}} (Y_n^S(nt) - nt), \hat{Y}_n^R(t) = \frac{1}{\sqrt{n}} (Y_n^R(nt) - nt), \quad t \geq 0. \quad (2.10)$$

and the diffusion-scaled versions of the reflection processes in (2.8) are given by:

$$\hat{L}_n(t) = \frac{1}{\sqrt{n}} L_n(nt) = \sqrt{n} \mu_n(0) \int_0^t I_{\{Q_n(s) = 0\}} ds, \quad t \geq 0,$$

$$\hat{U}_n(t) = \frac{1}{\sqrt{n}} U_n(nt) = \sqrt{n} \lambda_n(\sqrt{n} b) \int_0^t I_{\{Q_n(s) \geq b\}} ds, \quad t \geq 0. \quad (2.11)$$
Using (2.7) and the definitions in (2.3), (2.9), (2.10) and (2.11), one can easily verify that the following identity holds: For each $t \geq 0$,

$$
\hat{Q}_n(t) = \hat{W}_n(t) - \int_0^t \left[u_n(\hat{Q}_n(s)) + n\gamma_n \hat{Q}_n(s)\right] ds + \hat{L}_n(t) - \hat{U}_n(t),
$$

(2.12)

where,

$$
\hat{W}_n(t) = \bar{Y}_n \left(\int_0^t \bar{\lambda}_n(\sqrt{n} \hat{Q}_n(s)) ds \right) - \bar{Y}_n^f \left(\int_0^t \bar{\mu}_n(\sqrt{n} \hat{Q}_n(s)) ds \right) - \bar{Y}_n^r \left(\int_0^t \gamma_n \sqrt{n} \hat{Q}_n(s) ds \right). \tag{2.13}
$$

2.4 The cost structure and the main result.

Note that in diffusion scaling, when the diffusion-scaled queue-length is $\hat{Q}_n(t)$ at any time $t \geq 0$, the customers abandon the queue at the collective rate of $n\gamma \hat{Q}_n(t)$. As mentioned in the Remark 2.3 (and the discussion before that), our objective here is to study the asymptotic performance of the system under diffusion scaling. We assume that the cost of each abandoning customer is a constant $\beta > 0$, cost of controlling marginal rates is given by "a control cost function" $C(\cdot)$, and the income lost due to each rejected customer is a constant amount $p > 0$. We impose the following assumption on the control cost function $C(\cdot)$:

Assumption 2.4 (Control cost) $C(\cdot)$ is a non-negative, twice continuously differentiable function defined on $(-\infty, \infty)$ which satisfies $C(x) = 0$ for $x \leq 0$, $C'(0) = 0$ and $C''(x) > 0$ for all $x \geq 0$.

We consider an infinite horizon, discounted cost criterion, i.e. for any admissible policy (λ, μ, b), we define the associated asymptotic cost by

$$
J_p(\lambda, \mu, b) = \liminf_{n \to \infty} \frac{E}{\delta} \int_0^{\infty} e^{-\delta t} \left\{ \left[(\beta n \gamma_n) \hat{Q}_n(t) + C(u_n(\hat{Q}_n(t))) \right] dt + p \, d\hat{U}_n(t) \right\}, \tag{2.14}
$$

where $\delta > 0$ is a constant discount factor. The control problem here is to find an asymptotically optimal policy (λ^*, μ^*, b^*) which minimizes the cost defined in (2.14) among all the admissible policies.

In other words, the problem is to find $J_p(\lambda^*, \mu^*, b^*)$ such that

$$
J_p(\lambda^*, \mu^*, b^*) = \inf J_p(\lambda, \mu, b),
$$

where the infimum on the right side is taken over all the admissible policies (λ, μ, b) as in Definition 2.2.

Remark 2.5 (a) Notice that for the n-th system, if we control only the service rate, then the control cost is a non-decreasing function of the service rate.

(b) [Linear holding costs] We can include a linear holding cost in our analysis and obtain the corresponding optimal strategy. In particular, if $\kappa \geq 0$ represents the rate of holding cost per customer in the system, then using the structure of the cost functional in (2.14) (also see (3.4)), we can simply change the parameter β to $(\beta + \frac{\kappa}{\delta})$ and the value of the threshold p_0 to $\frac{\beta + \kappa}{\delta + \gamma}$ and our analysis and the conclusions will remain valid.
Theorem 2.6 There exists a real number \(b_p^* \) (\(b_p^* \) is considered as \(+\infty \) in the case of \(p \geq p_0 = \frac{\beta_n}{\delta + \gamma} \)) and a \(C^2 \)-function \(\mathcal{V}' \) which satisfies

\[
\frac{1}{2} \mathcal{V}_p''(x) - \Phi(\mathcal{V}_p'(x)) - \gamma x \mathcal{V}_p'(x) - \delta \mathcal{V}_p(x) + \beta \gamma x = 0 \quad \text{for} \quad 0 \leq x \leq b_p^*,
\]

(2.15)

\[
\mathcal{V}_p'(0) = 0 \quad \text{and} \quad \mathcal{V}_p'(x) = p, \quad \text{for} \quad x \geq b_p^*.
\]

(2.16)

Moreover, the pair \((b_p^*, \mathcal{V}_p(\cdot))\) is unique.

We provide the proof of the above theorem in Section 3.

Definition 2.7 (A candidate for optimality) Let \(p > 0 \), \(\mathcal{V}_p \) and \(b_p^* \) be as in (2.15) and (2.16) in Theorem 2.6. Define \(u_p^*(\cdot) = (C')^{-1}(\mathcal{V}_p^*(\cdot)) \). Choose any two functions \(\theta_1^*(\cdot) \), and \(\theta_2^*(\cdot) \) defined on \([0, \infty)\), such that

\[
0 \leq \theta_2^*(x) - \theta_1^*(x) = u_p^*(x), \quad \text{for all} \quad x \geq 0.
\]

Define

\[
\lambda_p^*(x) = \lambda + \frac{1}{\sqrt{n}} \theta_1^* \left(\frac{x}{\sqrt{n}} \right), \quad \text{and} \quad \mu_p^*(x) = \mu + \frac{1}{\sqrt{n}} \theta_2^* \left(\frac{x}{\sqrt{n}} \right).
\]

(2.17)

Then, \((\lambda^*, \mu^*, b_p^*) \equiv (\{\lambda_n^*(\cdot)\}_{n \geq 1}, \{\mu_n^*(\cdot)\}_{n \geq 1}, b_p^*)\) is a candidate for an optimal policy. The admissibility and asymptotic optimality of this policy will be shown in the proof of Theorem 2.8.

Theorem 2.8 (main result) Our proposed policy \((\lambda^*, \mu^*, b_p^*)\) in Definition 2.7 is asymptotically optimal, i.e.

\[
J_p(\lambda^*, \mu^*, b_p^*) \leq J_p(\lambda, \mu, b)
\]

for any admissible policy \((\lambda, \mu, b)\).

The proof of this theorem will be given in Section 4.2.

We have used \(\liminf \) in our definition of the asymptotic cost function in (2.14). Alternatively, one could define the asymptotic cost using \(\limsup \) as follows:

\[
I_p(\lambda, \mu, b) = \limsup_{n \to \infty} E \int_0^\infty e^{-\delta t} \left\{ \left[\beta(n\gamma_n)\hat{Q}_n(t) + C(u_n(\hat{Q}_n(t))) \right] \, dt + p \, d\hat{U}_n(t) \right\}.
\]

(2.18)

In the proof of Theorem 2.8, it turns out that for the proposed optimal policy in Definition 2.7, the limit (as \(n \to \infty \)) is actually achieved. Hence, using the simple fact that \(\liminf \, a_n \leq \limsup \, a_n \), we also obtain the following corollary and its proof is given at the end of Section 4.

Corollary 2.9 The proposed policy \((\lambda^*, \mu^*, b_p^*)\), given in Definition 2.7 is asymptotically optimal also for the cost criterion defined in (2.18), i.e.

\[
I_p(\lambda^*, \mu^*, b_p^*) \leq I_p(\lambda, \mu, b)
\]

for any admissible policy \((\lambda, \mu, b)\).
Remark 2.10 (a) We suppress the parameter $p > 0$ in λ^* and μ^* for simplicity of the notation.

(b) Also notice that, in the above proposed optimal policy, our arrival and service rates in (2.17) are not unique, even if the optimal asymptotic drift function $u^*(\cdot)$ is unique. This general setup covers more realistic special cases. For example, if the $\lambda > 0$ is a given constant and if $\lambda_n(x) \equiv \lambda$ for all x and the control problem is to choose an optimal state-dependent service rate $\mu_n(\cdot)$, then $\theta^*_1 \equiv 0$ and $\theta^*_2 \equiv u^*$, $\mu^*_n(\cdot)$ will be an optimal solution. Similarly, if $\mu > 0$ is given and $\mu_n(x) \equiv \mu$, then choosing $\theta^*_1 = -u^*$, one can obtain an optimal state-dependent arrival rate λ^*_n for this problem.

3 Brownian control problem.

In this section, we describe a diffusion model that approximates the behavior of the queueing model under the diffusion scaling. The associated diffusion control problem is usually referred to as the Brownian control problem (BCP). From the functional central limit theorem for the Poisson processes (with unit intensity), it follows that

$$(\tilde{Y}_n^A, \tilde{Y}_n^S, \tilde{Y}_n^R) \Rightarrow (W^A, W^S, W^R)$$

as $n \to \infty$.

where W^A, W^S, W^R are independent standard Brownian motions defined on some filtered probability space (see (4.24)). Intuitively, this suggests that from (2.13) and the definition of an admissible control (λ, μ, b) (Definition 2.2) that

$$\tilde{W}_n \Rightarrow \sigma W$$

where W is a standard Brownian motion with zero drift and infinitesimal variance 1 and the constant $\sigma > 0$ is given by $\sigma^2 = 2\lambda$. In Proposition 4.4, we will verify this assertion. Also, from the definition of L_n, \hat{U}_n in (2.11), it is clear that these processes start from the origin, they are nondecreasing and increase only when $\hat{Q}_n = 0$ or b respectively. Thus, if $u(\cdot)$ is the associated asymptotic marginal drift function of (λ, μ, b), one expects that the limit of diffusion scaled queues for each admissible policy (λ, μ, b) will satisfy:

$$X(t) = \sigma W(t) - \int_0^t [u(X(s)) + \gamma X(s)]ds + L(t) - U(t), \quad t \geq 0,$$

where (X, L, U) is a weak limit of $(\hat{Q}_n, \hat{L}_n, \hat{U}_n)$. As it is the case in many queueing system control problems, studying the diffusion control problem with a cost structure similar to that in the queueing control problem often provides insights for the search of an asymptotically optimal control policy for the queueing control problem. Throughout this section, the positive constants δ, β, γ, p and the function $C(\cdot)$ are as in Section 2.

We consider a state process $X_x(\cdot)$ which is a weak solution to the

$$X_x(t) = x - \int_0^t u(s)ds - \gamma \int_0^t X_x(s)ds + \sigma W(t) + L(t) - U(t), \quad t \geq 0,$$

where $x \geq 0$, $\{W(t) : t \geq 0\}$ is a one-dimensional Brownian motion, with no drift and variance 1 (and $\sigma^2 = 2\lambda$), adapted to a right-continuous Brownian filtration $\{\mathcal{F}_t : t \geq 0\}$ on some probability space $(\Omega, \mathcal{F}, \mathbb{P})$. The σ-algebra \mathcal{F}_0 is assumed to contain all the null sets in \mathcal{F}. The processes $u(\cdot)$ and $U(\cdot)$ are the control processes and they satisfy the following conditions.
The drift control process \(\{u(t) : t \geq 0\} \) is a real-valued progressively measurable with respect to \(\{\mathcal{F}_t\} \). To ensure that the equation (3.1) makes sense, we will also assume

\[
E \int_0^T |u(s)| ds < +\infty, \quad \text{for all } T > 0.
\]

(3.2)

The singular control process \(U(\cdot) \) is adapted to \(\{\mathcal{F}_t\} \), nondecreasing, right-continuous with left limits and \(U(0) = 0 \). These processes also satisfy the property that the associated state process \(X_x(\cdot) \) in (3.1) always remain nonnegative.

The other non-decreasing process \(L(\cdot) \) represents the local-time process of \(X_x(\cdot) \) at the origin. Therefore

\[
\int_0^T I_{\{X_x(s) > 0\}} dL(s) = 0, \quad \text{for all } T > 0.
\]

(3.3)

Definition 3.1 (Brownian control problem (BCP)) For any given \(x \geq 0 \), any nonnegative solution \(X_x(\cdot) \) to (3.1) together with the associated controls \(u(\cdot) \) and \(U(\cdot) \), which satisfy the above assumptions yield an admissible control system. More precisely, \((\Omega, \mathcal{F}, P), \{\mathcal{F}_t\}, X_x(\cdot), u(\cdot), U(\cdot)\) is called an admissible control system. With a slight abuse of notation, we simply write \((X_x, u, U)\) for an admissible control policy. For such an admissible control policy \((X_x, u, U)\), we define the cost criterion

\[
\tilde{J}_p(x, u, U) = \inf_{A} \tilde{J}_p(x, u, U).
\]

(3.4)

Note that the value function also depends on the other parameters of the system such as \(\delta, \beta, \gamma \) etc, but we suppress this dependence in our notation for the clarity of the presentation. We next introduce the \(A^+ \) defined as

\[
A^+ = \{(X_x, u, U) : (X_x, u, U) \text{ is an admissible control policy }\}.
\]

Our next proposition shows that it is enough to consider only non-negative drift control processes \(u(\cdot) \) for the BCP.

Proposition 3.2 Let \(V_p \) be the value function given in (3.5). Then for all \(x \geq 0 \),

\[
V_p(x) = \inf_{A^+} \tilde{J}_p(x, u, U).
\]

(3.5)

Let

\[
A = \{(X_x, u, U) : (X_x, u, U) \text{ is an admissible control policy}\}.
\]
and $\phi(f)(t) = f(t) + \psi(f)(t)$ for all $t \geq 0$. We also use the following well-known property of the regulator maps (see [17]): if f, g are continuous functions with $f(0) \geq g(0) \geq 0$ then

$$ (f - g) \text{ is a non-decreasing function } \Rightarrow \phi(f)(t) \geq \phi(g)(t) \text{ for all } t \geq 0. \quad (3.7) $$

Note that X_\cdot in (X_\cdot, u, U) satisfies (3.1). Hence, using Itô’s Lemma and properties of the regulator map, we obtain

$$ e^{\gamma t} X_\cdot(t) = \phi \left(x - \int_0^t e^{\gamma s} u(s) ds + \sigma \int_0^t e^{\gamma s} dW(s) - \int_0^t e^{\gamma s} dU(s) \right) (t), \quad t \geq 0. \quad (3.8) $$

Next, we define

$$ \tilde{X}_\cdot(t) = e^{-\gamma t} Z(t), \quad \text{where } Z(t) = \phi \left(x - \int_0^t e^{\gamma s} u^+(s) ds + \sigma \int_0^t e^{\gamma s} dW(s) - \int_0^t e^{\gamma s} dU(s) \right) (t), \quad t \geq 0. \quad (3.9) $$

Then for all $t \geq 0$, $\tilde{X}_\cdot(t) \geq 0$ and

$$ \tilde{X}_\cdot(t) e^{\gamma t} = x - \int_0^t e^{\gamma s} u^+(s) ds + \sigma \int_0^t e^{\gamma s} dW(s) - \int_0^t e^{\gamma s} dU(s) + L_1(t), \quad (3.10) $$

where $L_1(0) = 0$ and L_1 is a non-decreasing process which satisfies

$$ \int_0^t I_{\{\tilde{X}_\cdot(s) > 0\}} dL_1(s) = 0 \text{ a.s.} \quad (3.11) $$

Introduce $\tilde{L}(t) = \int_0^t e^{-\gamma s} dL_1(s)$ for all $t \geq 0$. Using Itô’s Lemma again, we get for all $t \geq 0$,

$$ \tilde{X}_\cdot(t) = x - \int_0^t u^+(s) ds - \int_0^t \gamma \tilde{X}_\cdot(s) ds + \sigma W(t) - U(t) + \tilde{L}(t), \quad (3.12) $$

and using (3.11),

$$ \int_0^t I_{\{\tilde{X}_\cdot(s) > 0\}} d\tilde{L}(s) = 0 \text{ a.s.} \quad (3.13) $$

Hence, $\tilde{X}_\cdot(\cdot)$ satisfies (3.1) with controls (u^+, U) and $(\tilde{X}_\cdot, u^+, U)$ is an admissible control policy in \mathcal{A}^+. Since $\int_0^t e^{\gamma s} (u^+(s) - u(s)) ds$ is a non-negative non-decreasing function, using (3.7) and (3.8)-(3.9), we obtain $e^{\gamma t} X_\cdot(t) \geq e^{\gamma t} \tilde{X}_\cdot(t)$, and hence $X_\cdot(t) \geq \tilde{X}_\cdot(t)$ for all $t \geq 0$. Also, it is evident that $C'(u(t)) \geq C(u^+(t))$ for all $t \geq 0$. Hence, by the definition of the cost function in (3.4), we have $\tilde{J}_p(x, u, U) \geq J_p(x, u^+, U)$. This completes the proof.

The above proposition implies that it suffices to minimize $\tilde{J}_p(x, u, U)$ over the control policies involving only non-negative $u(\cdot)$ (i.e. the control policies in \mathcal{A}^+). Hence, for the rest of the paper, we will assume that $u(\cdot)$ is a non-negative function. In the next assumption, we define a critical value for the cost parameter p.

Assumption 3.3 (Control set) Let $\mathcal{D} = \{u \in \mathbb{R} : (X_\cdot, u, U) \in \mathcal{A}\}$ and

$$ p_0 = \frac{\beta \gamma}{(\delta + \gamma)}. \quad (3.14) $$

We assume that there exists a positive real number θ_0 such that $[0, \theta_0] \subseteq \mathcal{D}$ and it satisfies

$$ C'(\theta_0) = p_0. \quad (3.15) $$
Remark 3.4 Since $C''(x) > 0$ for all $x \geq 0$, the above θ_0 which satisfies (3.15) is unique. In particular, from Assumption 2.4 it follows that for each $0 < p < p_0$, there exists a unique $\theta_p \in D$ such that $C'(\theta_p) = p$.

Now we state the formal connections of the processes in the BCP above to the processes introduced in the Section 2: The process $X_x(t)$ represents the diffusion limit of the queue-length process at time t, such that at time $t = 0$, the (diffusion-scaled) queue-length is equal to $x \geq 0$. The controller can choose the state-dependent drift rate function $u(\cdot)$ from the control set D. The drift rate is analogous to the scaled difference between the service and the arrival rates in the queueing system (see (2.3) and (2.4) in Definition 2.2). We do not restrict to feedback-type drift-control in the BCP, and $u(\cdot)$ is any progressively measurable process which satisfies (3.2). However, the optimal drift turns out to be of the feed-back type. The other control $U(t)$ is analogous to the cumulative number of customers rejected from the queueing system during the time-interval $[0, t]$, for all $t \geq 0$. A trivial choice of such U is the identically zero function which is associated with the infinite buffer length situation. In such a situation, the controller makes no effort to reduce the queue-length process by rejecting customers and this can be a good control policy if the penalty for rejecting the customers is prohibitively high. Later in this section, we will show the optimality of the no rejection policy under such circumstances. A more interesting choice for U corresponds to a finite buffer situation, which rejects customers if the queue-length exceeds a predetermined threshold $b > 0$ (the buffer-length). This case corresponds to $U(\cdot)$ being the local-time process of $X_x(\cdot)$ at the buffer-length $b > 0$. In general, this “rejection process” U can be chosen from any criteria (with jumps allowed) to reduce the queue-length (and need not be a local-time process), as far as it satisfies the constraints in the Definition 3.1 above.

Before we discuss the solution of the BCP in next two subsections, we introduce the following two functions Φ and Ψ which are essential in finding an optimal control policy. Introduce the function Φ on $[0, \infty)$ by

$$
\Phi(y) = \sup_{a \in D} [ay - C(a)] \quad \text{for} \quad y \geq 0,
$$

where D is as in Assumption 3.3. Clearly $\Phi(y)$ is finite for each $y \geq 0$. For each $y \in [0, p_0]$, the supremum in (3.16) achieved at a unique point $\Psi(y) \in D$, where

$$
\Psi(y) = (C')^{-1}(y), \quad \text{for} \quad 0 \leq y \leq p_0.
$$

(3.17)

Note that, with Assumption 2.4, the function $\Psi(\cdot)$ is continuously differentiable. For a detailed discussion on the properties of Φ and Ψ and their use in a discrete-time optimal control problem, we refer to [12]. In [2] and in [13], these functions were used in the construction of the optimal drift control processes and we follow the same approach here. In all these articles, these functions are denoted by ϕ and ψ (instead of Φ and Ψ respectively), but to distinguish these from the conventional Skorohod maps (which will be described in the Subsection 4.1), we intend to use this different notation in this article. By Assumption 2.4, Ψ is strictly increasing on $[0, p_0]$. Furthermore, for each $0 < p \leq p_0$,

$$
0 \leq \Psi(y) \leq \theta_p, \quad \text{when} \quad 0 \leq y \leq p, \quad \text{where} \quad C'(\theta_p) = p.
$$

(3.18)

By (3.16) and (3.17), we obtain,

$$
\Phi(y) = y\Psi(y) - C(\Psi(y)), \quad \text{for} \quad 0 \leq y \leq p_0,
$$

(3.19)

and

$$
\Phi'(y) = \Psi(y) \quad \text{for each} \quad 0 \leq y \leq p_0.
$$

(3.20)
3.1 A Verification Lemma

With the help of Φ in (3.16), the formal Hamilton-Jacobi-Bellman (HJB) equation (see [11]) for the BCP can be written as

$$\min \left\{ \frac{\sigma^2}{2} V''(x) - \Phi(V'(x)) - \gamma x V'(x) - \delta V(x) + \beta \gamma x, V'(x), p - V'(x) \right\} = 0,$$

for almost every $x \in [0, \infty)$. The following verification lemma enables us to sort out an optimal strategy.

Lemma 3.5 (Verification Lemma) Let $p > 0$ and \mathcal{V} be a C^2-function which satisfies the HJB equation in (3.21) together with the boundary condition

$$\mathcal{V}'(0) = 0.$$

Then

$$V_p(x) \geq \mathcal{V}(x), \text{ for all } x \geq 0,$$

where $V_p(\cdot)$ is the value function defined in (3.5).

Remark 3.6 Since \mathcal{V} satisfies (3.21), \mathcal{V} may depend on p, but we do not make it explicit in our notation for the clarity of the presentation.

Proof. We apply the generalized Itô’s Lemma (see p.285 of [24], [13]) to $\mathcal{V}(X_x(T))e^{-\delta T}$ where X_x satisfies (3.1) and $T > 0$. We also need a localization procedure, hence we introduce the sequence of stopping times $\{\tau_N : N \geq 1\}$ by

$$\tau_N = \inf\{t > 0 : X_x(t) \geq N\}$$

$$= +\infty, \text{ if the above set is empty.}$$

(3.23)

Since, $U(\cdot)$ is nondecreasing, by (3.1), it follows that $0 \leq X_x(t) \leq X_x(t^-)$ for all $t \geq 0$. Hence, $0 \leq X_x(t) \leq N$ for all $0 \leq t \leq \tau_N$.

$$\mathcal{V}(X_x(T \wedge \tau_N))e^{-\delta (T \wedge \tau_N)}$$

$$= \mathcal{V}(x) + \sigma \int_0^{T \wedge \tau_N} e^{-\delta s} \mathcal{V}'(X_x(s^-))dW(s)$$

$$+ \int_0^{T \wedge \tau_N} e^{-\delta s} \mathcal{V}'(X_x(s^-))dL(s) - \int_0^{T \wedge \tau_N} e^{-\delta s} \mathcal{V}'(X_x(s^-))dU(s)$$

$$+ \int_0^{T \wedge \tau_N} e^{-\delta s} \left(\frac{\sigma^2}{2} \mathcal{V}''(X_x(s^-)) - u(s)\mathcal{V}'(X_x(s^-)) - \gamma X_x(s^-)\mathcal{V}'(X_x(s^-)) - \delta \mathcal{V}(X_x(s^-)) \right) ds$$

$$+ \sum_{0<s\leq T \wedge \tau_N} e^{-\delta s} \left[\Delta \mathcal{V}(X_x(s)) + \mathcal{V}'(X_x(s^-)) \Delta U(s) \right],$$

(3.24)

where $\Delta \mathcal{V}(X_x(s)) \equiv \mathcal{V}(X_x(s)) - \mathcal{V}(X_x(s^-))$ and $\Delta U(s) \equiv U(s) - U(s^-)$. Since, $0 \leq \mathcal{V}'(x) \leq p$, notice that

$$|\Delta \mathcal{V}(X_x(s))| \leq p |X_x(s) - X_x(s^-)| = p [U(s) - U(s^-)].$$

13
Therefore, \(\sum_{0 < s \leq T \land \tau_N} e^{-\delta s} |\Delta \mathcal{V}(X_x(s))| \leq p U(T \land \tau_N) < +\infty \). Similarly,
\[
0 \leq \sum_{0 < s \leq T \land \tau_N} e^{-\delta s} |\mathcal{V}'(X_x(s-))| \Delta U(s) \leq p U(T \land \tau_N) < \infty.
\]
Hence, we can write,
\[
- \int_0^{T \land \tau_N} e^{-\delta s} \mathcal{V}'(X_x(s-)) dU(s) + \sum_{0 < s \leq T \land \tau_N} e^{-\delta s} [\Delta \mathcal{V}(X_x(s)) + \mathcal{V}'(X_x(s-)) \Delta U(s)]
\]
\[
= - \int_0^{T \land \tau_N} e^{-\delta s} \mathcal{V}'(X_x(s-)) dU^c(s) + \sum_{0 < s \leq T \land \tau_N} e^{-\delta s} \Delta \mathcal{V}(X_x(s))
\]
\[
\geq -p \int_0^{T \land \tau_N} e^{-\delta s} dU^c(s) - p \sum_{0 < s \leq T \land \tau_N} e^{-\delta s} \Delta U(s) = -p \int_0^{T \land \tau_N} e^{-\delta s} dU(s), \quad (3.25)
\]
where \(U^c(\cdot) \) is the continuous part of the process \(U(\cdot) \). Combining (3.24) with (3.25) and then using (3.3), (3.16) and (3.21) and taking expected value, we obtain
\[
E \left(e^{-\delta(T \land \tau_N)} \mathcal{V}(X_x(T \land \tau_N)) \right) \geq \mathcal{V}(x) - E \int_0^{T \land \tau_N} e^{-\delta s} [\beta \gamma X_x(s-) + C(u(s))] ds - pE \int_0^{T \land \tau_N} e^{-\delta s} dU(s). \quad (3.26)
\]
By (3.21), we also obtain
\[
E \left[e^{-\delta(T \land \tau_N)} |\mathcal{V}(X_x(T \land \tau_N))| \right] \leq E \left[(\mathcal{V}(0) + pX_x(T \land \tau_N)) e^{-\delta(T \land \tau_N)} \right]. \quad (3.27)
\]
We intend to estimate \(E \left[X_x(T \land \tau_N) e^{-\delta(T \land \tau_N)} \right] \). Notice that
\[
0 \leq E \left[X_x(T \land \tau_N) e^{-\delta(T \land \tau_N)} \right] \leq \left[E(X_x(T \land \tau_N)^2) \right]^\frac{1}{2} \left[E(e^{-2\delta(T \land \tau_N)}) \right]^\frac{1}{2}. \quad (3.28)
\]
To estimate \(E(X_x(T \land \tau_N)^2) \), we can apply the generalized Itô’s lemma to \(X_x(T \land \tau_N)^2 \) and follow a similar computation as in the derivation of (3.25) and eliminate the negative terms to obtain
\[
E(X_x(T \land \tau_N)^2) \leq C(1 + T), \quad (3.29)
\]
where \(C > 0 \) is a constant independent of \(T > 0 \). The derivation of (3.29) is also very similar to the calculations in Lemma 2.1 of [13] (see the estimate (2.9) in [13]) and we omit the details. One can verify this calculation easily using (3.24) with \(\mathcal{V}(x) \) replaced by \(x^2 \).

Now, (3.28) combined with (3.29) yields
\[
0 \leq E \left[X_x(T \land \tau_N) e^{-\delta(T \land \tau_N)} \right] \leq [C(1 + T)]^\frac{1}{2} \left[E(e^{-2\delta(T \land \tau_N)}) \right]^\frac{1}{2}.
\]
Combining this with (3.26) and (3.27), we obtain
\[
E \left[\mathcal{V}(0) e^{-\delta(T \land \tau_N)} \right] + p\sqrt{C(1 + T)} \left[E(e^{-2\delta(T \land \tau_N)}) \right]^\frac{1}{2}
\]
\[
+ E \int_0^{T \land \tau_N} e^{-\delta s} \left[(\beta \gamma X_x(s-) + C(u(s))) ds + pdU(s) \right] \geq \mathcal{V}(x).
\]
Next, first letting \(N \) go to infinity, and then taking limit as \(T \to \infty \), we obtain

\[
\tilde{J}(x, u, U) = E \int_0^\infty e^{-\delta s} [(\beta \gamma x(s-)) + C(u(s))] ds + pdU(s) \geq \mathcal{V}(x).
\]

for each admissible policy \((X_x, u, U)\). Taking the infimum over all admissible policies \((X_x, u, U)\), we get

\[
V_p(x) \geq \mathcal{V}(x), \text{ for all } x \geq 0.
\]

This completes the proof.

\[\square\]

3.2 An optimal control policy

First we describe our candidate for an optimal control policy for the BCP in detail and then prove its optimality in the next theorem (Theorem 3.8). The constant \(p_0 \) defined in (3.14) turned out to be the threshold point for the suggested optimal strategy in the following sense: When \(0 < p < p_0 \), the state space of the optimal state process is a finite interval (after a possible initial jump). When \(p \geq p_0 \), optimal strategy does not allow any rejections (i.e \(U^* \equiv 0 \)). Thus the state process is independent of \(p \) and the state space is the infinite interval \([0, \infty)\). Furthermore, when \(p \geq p_0 \), the value function \(V_p(\cdot) \) satisfies \(V_p(x) = V_{p_0}(x) \) for all \(x \). Now we describe our candidate policy which is shown to be optimal in Theorem 3.8.

Definition 3.7 (Optimal policy) For \(0 < p < p_0 \), the optimal state process \(X_{p,x}^*(\cdot) \) is a reflecting diffusion process on \([0, b_p^*]\) for some \(b_p^* > 0 \) (as in Lemma 3.10) and it satisfies

\[
X_{p,x}^*(t) = x - \int_0^t u_p^*(X_{p,x}^*(s)) ds - \gamma \int_0^t X_{p,x}^*(s) ds + \sigma W(t) + L_p^*(t) - U_p^*(t).
\]

(3.30)

Here \(L_p^*(\cdot) \) is the local-time process of \(X_{p,x}^*(\cdot) \) at the origin. The feedback-type optimal drift control is given by \(u_p^*(X_{p,x}^*(\cdot)) \) where \(u_p^*(\cdot) \) is a Lipschitz continuous function described in (3.39). Without any ambiguity, we refer to this feedback-type drift control by \(u_p^*(\cdot) \). The optimal rejection policy \(U_{p,x}^*(\cdot) \) satisfies \(U_p^*(t) = (x - b_p^*)^+ + U_p^*(t) \) for all \(t \geq 0 \), where \(U_p^*(\cdot) \) is the local time process of \(X_{p,x}^*(\cdot) \) at \(b_p^* > 0 \). Note that \(X_{p,x}^*(\cdot) \) makes an initial jump to \(b_p^* \) if \(x > b_p^* \). We simply identify this policy by \((X_{p,x}^*, u_p^*, U_p^*) \) for \(0 < p < p_0 \).

For \(p \geq p_0 \), the same admissible control is optimal for all the values of \(p \) and hence \(V_p(x) = V_{p_0}(x) \) for all \(x \geq 0 \). Thus, we denote the optimal state process by \(X_{p,x}^*(\cdot) \) and it is a reflecting diffusion on \([0, \infty)\) which satisfies

\[
X_{p,x}^*(t) = x - \int_0^t u_p^*(X_{p,x}^*(s)) ds - \gamma \int_0^t X_{p,x}^*(s) ds + \sigma W(t) + L_p^*(t),
\]

(3.31)

with the same notation for the processes as in (3.30). The feedback-type optimal drift is given by \(u_{p_0}^*(X_{p,x}^*(\cdot)) \) where \(u_{p_0}^*(\cdot) \) is a Lipschitz continuous function described in (3.45). Hence for all \(p \geq p_0 \), we take \(u_p^* = u_{p_0}^* \) for the optimal drift function. In this case, the optimal rejection process is identically zero and hence \(X_{p,x}^* \) corresponds to a queue-length process with infinite buffer capacity. Accordingly, we denote this policy by \((X_{p,x}^*, u_p^*, 0) \).

Now we state the main theorem of this section.
Theorem 3.8 (a) For each $p > 0$, the value function $V_p(\cdot)$ is a convex C^2-function which satisfies the HJB equation in (3.21) together with (3.22). When $p \geq p_0$, $V_p(x) = V_{p_0}(x)$ for all $x \geq 0$. Furthermore, the feedback-type optimal drift $u_p^*(\cdot)$ in (3.30) and (3.31) satisfies the condition
\[u_p^*(x) = \Psi(V_p'(x)), \quad \text{for all } x \geq 0 \text{ and for each } p > 0, \]
where Ψ is as given in (3.17).

(b) When $0 < p < p_0$, the policy (X^*_p, u^*_p, U^*_p) described in (3.30) is optimal and b^*_p represents the optimal buffer size. It also satisfies
\[b^*_p = \inf \{ x > 0 : V_p'(x) = p \}. \]
If $p \geq p_0$, the policy $(X^*_x, u^*_p, 0)$ described in (3.31) is optimal. Here the state process X^*_x corresponds to an infinite buffer capacity.

Remark 3.9 When $0 < p < p_0$, b^*_p is finite and the value function $V_p(\cdot)$ also satisfies $V_p''(b^*_p) = 0$. In this case, from our optimal policy we have $V_p(x) = V_p(b^*_p) + p (x - b^*_p)$ when $x > b^*_p$. Since $V_p(\cdot)$ is convex and $V_p'(b^*_p) = p$, from (3.33) it follows that b^*_p is unique.

Proof. First we consider $0 < p < p_0$. We assume that there exists a point $b^*_p > 0$ and an increasing function Y_p such that
\[\frac{\sigma^2}{2} Y_p''(x) - \Phi(Y_p'(x)) - \gamma x Y_p'(x) + \beta \gamma x = \frac{\sigma^2}{2} Y_p'(0) + \delta \int_0^x Y_p(u) du, \]
for $0 < x < b^*_p$, together with the boundary conditions
\[Y_p(0) = 0, \quad Y_p(b^*_p) = p, \quad Y_p'(b^*_p) = 0, \quad \text{and } 0 \leq Y_p(x) < p \quad \text{when } 0 \leq x < b^*_p. \]
We will verify the existence of such a $b^*_p > 0$ and the function Y_p in Theorem 3.10. Next introduce
\[Y_p(x) = \begin{cases} \frac{\sigma^2}{2} Y_p'(0) + \int_0^x Y_p(u) du & \text{for all } 0 \leq x \leq b^*_p, \\ Y_p(b^*_p) + p(x - b^*_p) & \text{for all } x > b^*_p. \end{cases} \]
Since $Y_p(\cdot)$ is an increasing C^1-function on $[0, b^*_p]$, $Y_p(\cdot)$ is a convex C^2-function on $[0, \infty)$. Furthermore, $Y_p(\cdot)$ satisfies
\[\frac{\sigma^2}{2} Y_p''(x) - \Phi(Y_p'(x)) - \gamma x Y_p'(x) - \delta Y_p(x) + \beta \gamma x = 0 \quad \text{for } 0 \leq x \leq b^*_p. \]
Evaluating (3.37) at $x = b^*_p$ and using (3.35) we obtain
\[\delta Y_p(b^*_p) = \beta \gamma b^*_p - p \gamma b^*_p - \Phi(p). \]
A direct computation using this identity and the fact that $p < p_0$ yields
\[\frac{\sigma^2}{2} Y_p''(x) - \Phi(Y_p'(x)) - \gamma x Y_p'(x) - \delta Y_p(x) + \beta \gamma x > 0 \quad \text{for } x > b^*_p. \]
Hence, (3.35), (3.37) and (3.38) implies that Y_p satisfies all the assumptions of the verification lemma (Lemma 3.5). Therefore, we conclude that $V_p(x) \geq Y_p(x)$ for all $x \geq 0$. To show that $V_p(x)$
is indeed equal to $V_p(x)$ for all $x \geq 0$, we verify that the proposed policy $(X_{p,x}^*, u_p^*, U_p^*)$ in (3.30) (with appropriately defined $u_p^*(\cdot)$) is an admissible policy and the cost $\tilde{J}_p(x, u_p^*, U_p^*)$ from this policy (as defined in (3.4)) is equal to $V_p(x)$ for each $x \geq 0$. Thus, it will follow that $V_p(x) \leq V_p(x)$ and consequently, $V_p(x) = V_p(x)$ for all $x \geq 0$.

For each $0 < p < p_0$, introduce

$$u_p^*(x) = \Psi(V_p'(x)), \quad \text{for all } x \geq 0,$$
(3.39)

where $\Psi(\cdot)$ is given in (3.17). By (3.36) and (3.39), $u_p^*(\cdot)$ is a Lipschitz continuous function. Thus, $u_p^*(\cdot)$ takes values in $[0, \theta_p]$ where $C'(\theta_p) = p$. This interval $[0, \theta_p]$ is contained in the control set D by the assumption (3.15). Let $b_p^* > 0$ be as in (3.34) and (3.35). We consider the policy $(X_{p,x}^*, u_p^*, U_p^*)$ with $u_p^*(\cdot)$ defined in (3.39). Since, $u_p^*(\cdot)$ is a Lipschitz continuous function and $X_{p,x}^*$ is a reflecting diffusion on $[0, b_p^*]$, it is evident that $(X_{p,x}^*, u_p^*, U_p^*)$ is an admissible policy. Note that if $x > b_p^*$, the state process makes an initial jump to b_p^* as explained in the discussion below (3.30). For simplicity, we consider $X_{p,x}^*(0) = x$ is in $[0, b_p^*]$, and apply Itô’s Lemma to $V_p(X_{p,x}^*(T))e^{-\delta T}$. We use (3.18) and (3.37), $V_p'(0) = 0$ and $V_p'(b_p^*) = p$ to obtain

$$E[V_p(X_{p,x}^*(T))e^{-\delta T}] = V_p(x) - E \int_0^T e^{-\delta s}[\beta \gamma x P_s(x) + C(u_p(X_{p,x}^*(s)))]ds - pE \int_0^T e^{-\delta s}dU_p^*(s).$$

Here $U_p^*(\cdot)$ is the local-time process of $X_{p,x}^*(\cdot)$ at $b_p^* > 0$. Since V_p is bounded on $[0, b_p^*]$, by letting $T \to \infty$, we obtain

$$V_p(x) = \tilde{J}_p(x, u_p^*, U_p^*),$$
(3.40)

where $\tilde{J}_p(\cdot)$ is as given in (3.4). When $x > b_p^*$, there is an initial jump to b_p^* using the rejection process U_p^*. Hence,

$$\tilde{J}_p(x, u_p^*, U_p^*) = p(x - b_p^*) + \tilde{J}_p(b_p^*, u_p^*, U_p^*) = p(x - b_p^*) + V_p(b_p^*) = V_p(x),$$
(3.41)

by (3.36). Hence we have $V_p(x) \leq V_p(x)$ (which implies that $V_p(x) = V_p(x)$) and therefore, $(X_{p,x}^*, u_p^*, U_p^*)$ is an optimal policy for $0 < p < p_0$. The conclusions (3.32) and (3.33) both follow directly from (3.35) and (3.39). This completes the proof of both parts of the Theorem (3.8), when $0 < p < p_0$.

To prove the theorem for $p \geq p_0$, we assume the existence of an increasing function γ_0 which satisfies

$$\frac{\sigma^2}{2} \gamma_0''(x) - \Phi(\gamma_0(x)) - \gamma x \gamma_0(x) + \beta \gamma_0(x) = \frac{\sigma^2}{2} \gamma_0'(0) + \delta \int_0^x \gamma_0(u)du, \quad \text{for all } x \geq 0,$$
(3.42)

together with the boundary conditions

$$\gamma_0(0) = 0, \quad 0 \leq \gamma_0(x) < p_0 \quad \text{for all } x \geq 0 \quad \text{and} \quad \lim_{x \to \infty} \gamma_0(x) = p_0.$$
(3.43)

We will also verify the existence of such a function γ_0 in Theorem 3.10. Introduce

$$\gamma_0(x) = \frac{\sigma^2}{2\delta} \gamma_0'(0) + \int_0^x \gamma_0(u)du \quad \text{for all } x \geq 0.$$
(3.44)

Since $\gamma_0(\cdot)$ is an increasing C^1-function, $V_p(\cdot)$ is a convex C^2-function. We take any $p \geq p_0$. Then a direct computation using (3.42) and (3.43) verifies that γ_0 satisfies all the assumptions of the
For each verification lemma (Lemma 3.5). Hence, we obtain $V_p(x) \geq V_0(x)$ for all $x \geq 0$. Now we prove $V_p(x) = V_0(x)$ for all $x \geq 0$. For each $p \geq p_0$, we introduce

$$u^*_p(x) = \Psi(V'_0(x)), \text{ for all } x \geq 0,$$

(3.45)

where $\Psi(\cdot)$ is given in (3.17). Notice that for $p \geq p_0$, $u^*_p(x) = u^*_{p_0}(x)$ for all $x \geq 0$, since V_0 defined in (3.44) depends only on p_0. We intend to show that $(X^*_x, u^*_p, 0)$ is an admissible policy for all $p \geq p_0$, and $\bar{J}_p(x, u^*_p, 0) = V_0(x)$ for all $x \geq 0$. Note that $u^*_p(\cdot)$ is a Lipschitz continuous function and $X^*_{p,x}$ is a reflecting diffusion on $[0, +\infty)$ with a reflecting barrier at the origin. By (3.17) and (3.45), $u^*_p(\cdot)$ take values in $[0, \theta_0]$ where $C'(\theta_0) = p_0$. Notice that $[0, \theta_0]$ is contained in the control set \mathcal{D} by (3.15). Therefore, $(X^*_x, u^*_p, 0)$ is an admissible policy.

Now X^*_x satisfies (3.31) with optimal drift $u^*_p(\cdot)$ defined in (3.45). Hence we apply Itô’s Lemma to $V_0(X^*_x(T))e^{-\delta T}$ to obtain

$$E[V_0(X^*_x(T))e^{-\delta T}] = V_0(x) - E \int_0^T e^{-\delta s}[\beta \gamma X^*_x(s) + C(u^*_p(X^*_x(s)))]ds.$$

To verify $\lim_{T \to \infty} E[V_0(X^*_x(T))e^{-\delta T}] = 0$, by (3.43), it suffices to show that

$$\lim_{T \to \infty} E[X^*_x(T)e^{-\delta T}] = 0.$$

For this, we again apply Itô’s Lemma to $(X^*_x(T))^2$, using (3.31) and eliminate the negative terms to get the estimate $E[(X^*_x(T))^2] \leq C(1 + T)$, where $C > 0$ is a constant independent of $T > 0$ (see (3.29) for a similar calculation). This yields $\lim_{T \to \infty} E[X^*_x(T)e^{-\delta T}] = 0$. Hence, using a similar approach as used in deriving (3.40), we obtain

$$V_0(x) = \bar{J}_p(X^*_x, u^*_p, 0), \text{ for all } x \geq 0, p \geq p_0,$$

and $(X^*_x, u^*_p, 0)$ is an optimal policy for each $p \geq p_0$. Furthermore, the feedback-type drift control u^*_p is given by $u^*_p(x) \equiv u^*_{p_0}(x) = \Psi(V'_0(x)) = \Psi(V'_{p_0}(x))$, for all $x \geq 0$. Since, $V_0(\cdot)$ is a C^2-function, the proof of Theorem 3.8 for the case $p \geq p_0$ is also complete.

Proof of Theorem 2.6: The proof of the Theorem 3.8 given above directly shows the existence of such b^*_p which satisfies (2.15) and (2.16). Since, $V_p(x) \equiv V_p(x)$ for all $x \geq 0$, where $V_p(\cdot)$ is the value function defined in (3.5), the pair $(b^*_p, V_p(\cdot))$ is unique.

It remains to verify the existence of a function $V_p(\cdot)$ which satisfies (3.34) and (3.35) and a function $V_0(\cdot)$ which satisfies (3.42) and (3.43). We address this issue in the next subsection.

3.3 A parametrization method

Our aim here is to establish the existence of a function $V_p(\cdot)$ which satisfies (3.34)-(3.35) and another function $V_0(\cdot)$ which satisfies (3.42) and (3.43). This will be achieved in the following theorem and it will complete the proof of the Theorem 3.8.

Theorem 3.10 (i) For each p in $(0, p_0)$, there exists a point $b^*_p > 0$ and an increasing function $V_p(\cdot)$ which satisfies (3.34) and (3.35).
(ii) There also exists an increasing function $\mathcal{Y}_0(\cdot)$ defined on $[0, \infty)$, which satisfies (3.42) and (3.43).

The proof of this theorem will be given at the end of this section, since it needs several results about the behavior of a parametric family of solutions to the differential equation in (3.47) below.

First we extend the function Φ defined in (3.16) to negative real axis by setting

$$\Phi(y) = 0, \text{ for all } y \leq 0.$$ \hfill (3.46)

Then, by the assumptions on the cost function C (Assumption 2.4), (3.19) and (3.20), it is clear that Φ' is a Lipschitz continuous function on \mathbb{R}. For our purposes, only the behavior of Φ on the interval $[0, p_0]$ is crucial.

Next we consider the following parametric family of differential equations:

$$\begin{cases}
\sigma^2 \mathcal{Y}_r''(x) - 2\Phi(\mathcal{Y}_r(x)) - 2\gamma x \mathcal{Y}_r(x) + 2\beta \gamma x = r + 2\delta \int_0^x \mathcal{Y}_r(u)du \\
\mathcal{Y}_r(0) = 0, \mathcal{Y}_r'(0) = r.
\end{cases}$$ \hfill (3.47)

We differentiate the above equation and use (3.20) to obtain

$$\sigma^2 \mathcal{Y}_r''(x) - 2\Phi(\mathcal{Y}_r(x))\mathcal{Y}_r'(x) - 2\gamma x \mathcal{Y}_r'(x) - 2(\gamma + \delta) \mathcal{Y}_r(x) + 2\beta \gamma = 0.$$ \hfill (3.48)

Since Ψ is a C^1-function, this second order non-linear differential equation with the initial data $\mathcal{Y}_r(0) = 0$ and $\mathcal{Y}_r'(0) = r$ has a unique solution which is valid on the interval $[0, \omega_r)$ where ω_r is the explosion point for \mathcal{Y}_r (See [16]), and $0 < \omega_r \leq +\infty$. Consequently, (3.47) has a unique solution \mathcal{Y}_r which is valid on $[0, \omega_r)$. Furthermore, this solution $\mathcal{Y}_r(x)$ is jointly continuous in (r, x). (See chapter 5 of [16]) and we will use this fact in our analysis of (3.47).

Our next proposition describes the properties of the solution \mathcal{Y}_r.

Proposition 3.11 For the family of solutions $(\mathcal{Y}_r(\cdot))_{r>0}$, the following properties hold:

(i) if $r_1 > r_2 > 0$ then $\mathcal{Y}_{r_1}(x) > \mathcal{Y}_{r_2}(x)$ for all $0 < x < \omega_{r_1} \wedge \omega_{r_2}$.
Furthermore, $\mathcal{Y}_{r_1}(x) > (r_1 - r_2)x + \mathcal{Y}_{r_1}(x)$ on this interval $(0, \omega_{r_1} \wedge \omega_{r_2})$.

(ii) If $\mathcal{Y}_r'(\xi) = 0$ for some $\xi > 0$, then $\mathcal{Y}_r(\xi) \neq p_0$ where $p_0 > 0$ is given in (3.14). Furthermore, if $x = \xi > 0$ is the local maximum for \mathcal{Y}_r then $\mathcal{Y}_r(\xi) < p_0$. Also, \mathcal{Y}_r cannot have any local minima.

(iii) There exist $r_0 > 0$ such that for each $r > r_0$, \mathcal{Y}_r does not have any local maxima and $\mathcal{Y}_r(x)$ is increasing to ∞ as x increases to ω_r.

(iv) For each $r > 0$, \mathcal{Y}_r has a positive local maximum on $(0, \infty)$ if and only if $\mathcal{Y}_r(z) = 0$ for some $z > 0$.

Proof. Let $r_1 > r_2 > 0$. since $\mathcal{Y}_{r_1}(0) = \mathcal{Y}_{r_2}(0) = 0$ and $\mathcal{Y}_{r_1}'(0) = r_1 > r_2 = \mathcal{Y}_{r_2}'(0)$, it follows that $\mathcal{Y}_{r_1}(x) > \mathcal{Y}_{r_2}(x)$ for all x in an interval $(0, \delta)$ for some $\delta > 0$. Now suppose $\mathcal{Y}_{r_2}(z) \geq \mathcal{Y}_{r_1}(z)$ for
some $z \geq 0$, then there is a point $c \geq \delta > 0$ such that $\mathcal{Y}_{r_2}(c) = \mathcal{Y}_{r_1}(c)$ and $\mathcal{Y}_{r_2}(x) < \mathcal{Y}_{r_1}(x)$ when $0 < x < c$. Then using (3.47),

$$\sigma^2 [\mathcal{Y}_r'(x) - \mathcal{Y}_{r_2}'(x)] = \sigma^2(r_1 - r_2) + 2 \gamma x(\mathcal{Y}_{r_1}(x) - \mathcal{Y}_{r_2}(x)) + 2(\Phi(\mathcal{Y}_{r_1}(x)) - \Phi(\mathcal{Y}_{r_2}(x))) + 2\delta \int_{0}^{x} [\mathcal{Y}_{r_1}(u) - \mathcal{Y}_{r_2}(u)] du.$$

Since Φ is an increasing function, this implies that $\mathcal{Y}_{r_1}'(x) - \mathcal{Y}_{r_2}'(x) > (r_1 - r_2)$ for each x in $(0, c)$. Hence, $\mathcal{Y}_{r_1}(c) = \mathcal{Y}_{r_2}(c)$ is impossible and the same argument implies that $\mathcal{Y}_{r_1}'(x) - \mathcal{Y}_{r_2}'(x) > (r_1 - r_2)$ for all x in $(0, \omega_{r_1} \wedge \omega_{r_2})$. Consequently $\mathcal{Y}_{r_1}(x) > (r_1 - r_2)x + \mathcal{Y}_{r_1}(x)$ on this interval $(0, \omega_{r_1} \wedge \omega_{r_2})$. This completes the proof of part (i).

For part (ii), let $\xi > 0$ be a point which satisfies $\mathcal{Y}_r'(\xi) = 0$. Suppose that $\mathcal{Y}_r(\xi) = p_0$ where p_0 is given in (3.45). Now let

$$x_0 = \inf\{\xi > 0 : \mathcal{Y}_r(\xi) = p_0 \text{ and } \mathcal{Y}_r'(\xi) = 0\}.$$

Then $x_0 > 0$, $\mathcal{Y}_r(x_0) = p_0$ and $\mathcal{Y}_r'(x_0) = 0$. The function \mathcal{Y}_r also satisfies (3.48) with the same initial data $\mathcal{Y}(x_0) = p_0$ and $\mathcal{Y}'(x_0) = 0$. Since Ψ is a C^1-function, this initial value problem has a unique solution in an interval $(x_0 - \delta, x_0 + \delta)$ for some $\delta > 0$ where $x_0 > \delta$. Hence, $\mathcal{Y}_r(x) \equiv p_0$ on $(x_0 - \delta, x_0 + \delta)$ and this contradicts with the definition of x_0. Consequently $\mathcal{Y}_r(\xi) \neq p_0$ if $\mathcal{Y}_r'(\xi) = 0$.

Next, if $\mathcal{Y}_r'(\xi) = 0$, by (3.48) we obtain,

$$\frac{\sigma^2}{2} \mathcal{Y}_r''(\xi) = (\delta + \gamma)(\mathcal{Y}_r(\xi) - p_0). \quad (3.49)$$

Hence if $x = \xi$ is a local maximum, then $\mathcal{Y}_r''(\xi) \leq 0$ and by (3.49) we obtain $\mathcal{Y}_r(\xi) \leq p_0$. Since $\mathcal{Y}_r'(\xi) = 0$, we know that $\mathcal{Y}_r(\xi) \neq p_0$ and consequently, $\mathcal{Y}_r(\xi) < p_0$. If $x = \xi > 0$ is a local minimum then $\mathcal{Y}_r'(\xi) = 0$ and $\mathcal{Y}_r''(\xi) \geq 0$. Then by (3.49), $\mathcal{Y}_r(\xi) \geq p_0$. Since $\mathcal{Y}_r(0) = 0$ and $\mathcal{Y}_r'(0) = r > 0$, it follows that \mathcal{Y}_r is strictly increasing in an interval $(0, \delta)$ for some $\delta > 0$. These two facts imply the existence of a local maximum at $x = z$ where $0 < z < \xi$ and $\mathcal{Y}_r(z) > p_0$. This is a contradiction. Hence \mathcal{Y}_r cannot have any local minima. This completes the proof of part (ii).

To prove part (iii), we pick $r_1 > 0$, then by the initial conditions in (3.47), $\mathcal{Y}_{r_1}(x) > 0$ for all x in $(0, 2\delta r_1)$ for some $\delta r_1 > 0$. For $r > r_1$, using (3.47) and part (i) of this proposition, we obtain

$$\sigma^2 \mathcal{Y}_r(x) > \sigma^2 r - 2\beta \gamma x \quad \text{for } 0 < x < 2\delta r_1.$$

Next, we pick $r_0 > r_1$ such that $(\sigma^2 r_0 - 2\beta \gamma \delta r_1 > \sigma^2 p_0$. Hence $\sigma^2 \mathcal{Y}_r(x) > \sigma^2 r_0 - 2\beta \gamma \delta r_1$ when $0 < x < \delta r_1$ and consequently for $r > r_0$, $\sigma^2 \mathcal{Y}_r(\delta r_1) > \sigma^2 \mathcal{Y}_r(\delta r_1) + (\sigma^2 r_0 - 2\beta \gamma \delta r_1) \delta r_1 > \sigma^2 p_0$.

By part (ii), \mathcal{Y}_r cannot have any local maxima when $\mathcal{Y}_r(x) > p_0$ and therefore, we conclude that $\mathcal{Y}_r(\cdot)$ is an increasing function when $x > \delta r_1$.

Now if $\lim_{x \to \omega_r} \mathcal{Y}_r(x) = \lambda_0$ exists and if λ_0 is finite, by integrating (3.47), it is easy to observe that ω_r is infinite. Then again using (3.47), we obtain

$$\lim_{x \to \infty} \frac{\mathcal{Y}_r(x)}{x} = \frac{2}{\sigma^2} (\delta + \gamma)(\lambda_0 - p_0). \quad (3.50)$$

Clearly $\lambda_0 > p_0$, thus the above limit is positive and $\lim_{x \to \infty} \mathcal{Y}_r(x) = +\infty$. This is a contradiction and hence $\lambda_0 = +\infty$. Thus \mathcal{Y}_r is increasing to $+\infty$ as x increases to ω_r. This completes part (iii).
Now let $x = \xi > 0$ be the first local maximum of Y_r on $(0, +\infty)$. Then $p_0 > Y_r(\xi) > 0$, $Y_r'(\xi) = 0$ and $0 < Y_r(x) < Y_r(\xi)$ when $0 < x < \xi$. By (3.49), $Y_r''(\xi) < 0$ and by part (ii), Y_r does not have any local minima. Therefore Y_r is decreasing when $x > \xi$. Suppose that $\lim_{x \to \omega_r} Y_r(x)$ is finite. Then we can use (3.50) and the argument above to conclude $\omega_r \equiv +\infty$ and $\lim_{x \to +\infty} Y_r'(x) < 0$. Thus $\lim_{x \to +\infty} Y_r(x) = -\infty$ and this is a contradiction. Hence $\lim_{x \to +\infty} Y_r(x) = -\infty$ and as a consequence, $Y_r(z) = 0$ for some $z > \xi$.

Conversely, if $Y_r(z) = 0$ for $z > 0$, since $Y_r(0) = 0$ and $Y_r'(0) = r > 0$ it is clear that there is a local maximum at a point $\xi > 0$ where $0 < \xi < z$ and $Y_r(\xi) > 0$. This completes the proof of the proposition.

Remark 3.12 One reason that $p_0 = \frac{\beta \gamma}{(\delta + \gamma)}$ is a critical value in the analysis of the parametric family of solutions to (3.47) is that the constant function $Y(x) = p_0$ is the only constant solution to (3.48). But note that, it does not satisfy (3.47).

Proposition 3.13 There exists $\hat{r} > 0$ which satisfies the following conditions:

(i) If $0 < r < \hat{r}$ then there exists $z_r > 0$ such that $Y_r(z_r) = 0$ and the set $\{x > 0 : Y_r(x) > 0\}$ is equal to the open interval $(0, z_r)$. Furthermore, let

$$H(r) = \max_{x > 0} Y_r(x).$$

Then $H(r)$ is finite, $H(r) = \max_{0 < x < z_r} Y_r(x)$ and $0 < H(r) < p_0$.

(ii) When $r = \hat{r}$, Y_r is strictly increasing, $\omega_r \equiv +\infty$ and $\lim_{x \to +\infty} Y_r(x) = p_0$.

(iii) If $r > \hat{r}$, Y_r increases to $+\infty$ when x increases to ω_r.

Proof. First we consider the solution Y_0 to (3.47) which corresponds to $r = 0$. Using (3.48), the fact that $\Psi(0) = 0$, and the initial conditions $Y_0(0) = Y'_0(0) = 0$, we obtain $\sigma^2 Y''_0(0) = -2\beta \gamma < 0$. Hence, there exists an $\epsilon_0 > 0$ such that $Y_0 = \sigma^2 Y''_0(0) = 0$ and ω_0 has a local maximum at $x = 0$. Consequently, $Y_0(\epsilon_0) < 0$. Since $Y_r(x)$ is jointly continuous in (r, x) and using part (i) of Proposition 3.11, we can find $\eta_0 > 0$ such that $Y_r(\epsilon_0) < 0$ for all $0 \leq r < \eta_0$. Thus, for each such r in $(0, \eta_0)$, Y_r has a positive local maximum ξ_r in $(0, \epsilon_0)$ and a zero at z_r in $(0, \epsilon_0)$ where $0 < \xi_r < z_r < \epsilon_0$.

Introduce

$$\hat{r} = \sup\{r > 0 : Y_r(x) = 0 \text{ for some } x > 0\}. \quad (3.52)$$

The interval $(0, \eta_0)$ is in the above set and thus \hat{r} is well defined. Let r_0 be as in part (iii) of the Proposition 3.11. Then clearly $\hat{r} \leq r_0$. Consequently $0 < \eta_0 \leq \hat{r} \leq r_0 < +\infty$. Next, by parts (i) and (iv) of Proposition 3.11, it clearly follows that for each $0 < r < \hat{r}$, $Y_r(x) = 0$ for some $x > 0$. We let

$$z_r = \inf\{x > 0 : Y_r(x) = 0\}.$$

By part (ii) of Proposition 3.11, each Y_r can have at most one local maximum and then we can deduce that $H(r)$ is finite, $H(r) = \max_{0 < x < z_r} Y_r(x)$ and $0 < H(r) < p_0$. This completes part (i).

Since $0 < H(r) < p_0$ for each $r < \hat{r}$ and $Y_r(x)$ is jointly continuous in (r, x), it follows that $0 < Y_r(x) \leq p_0$, for all $x \in (0, \omega_r)$. Suppose that there is a $\xi > 0$ with $Y_r'(\xi) = 0$, then $Y_r(\xi) < p_0$.
by part (ii) of Proposition 3.11. Now using (3.49), we have $\mathcal{Y}''(\xi) < 0$ and $x = \xi$ is a strict local maximum for \mathcal{Y}_r. Therefore we can employ the joint continuity of $\mathcal{Y}_r(x)$ in (r, x) and the monotonicity of \mathcal{Y}_r in r as in part (i) of the Proposition 3.11 to conclude that for some $r > \hat{r}$, \mathcal{Y}_r also has a local maximum in a neighborhood of ξ when $|r - \hat{r}|$ is sufficiently small. Using part (iv) of Proposition 3.11, it follows that for each such $r > \hat{r}$, $\mathcal{Y}_r(x) = 0$ for some x. This contradicts with the definition of \hat{r} in (3.52). Hence $\mathcal{Y}_r(x) \neq 0$ for all $x \geq 0$ and \mathcal{Y}_r is a C^2-function. But, $\mathcal{Y}_r(0) = \hat{r} > 0$ and consequently $\mathcal{Y}_r(x) > 0$ for all $0 < x < \omega_r$. Thus \mathcal{Y}_r is an increasing function which satisfies $0 < \mathcal{Y}_r(x) \leq p_0$ and (3.47). If $\mathcal{Y}_r(x_1) = p_0$ for some x_1, then it is a local maximum and $\mathcal{Y}_r'(x_1) = 0$. Then by the uniqueness of the solutions to the differential equation (3.48), it follows that $\mathcal{Y}_r(x) = p_0$ for all x which is a contradiction. Hence $0 < \mathcal{Y}_r(x) < p_0$ for all x. By integrating (3.47) it is evident that $\mathcal{Y}_r(x)$ is finite for each x and thus $\omega_r \equiv +\infty$. Now let $\lambda_0 = \lim_{x \to \omega_r} \mathcal{Y}_r(x)$. Then $0 < \lambda_0 \leq p_0$. By (3.50), $\lim_{x \to \omega_r} \frac{\mathcal{Y}_r(x)}{x} = \frac{\beta}{\sigma}(\delta + \gamma)(\lambda_0 - p_0)$. Since $\mathcal{Y}_r(x) > 0$ for all x, it follows that $\lambda_0 \geq p_0$. Hence $\lambda_0 = p_0$ and thus part (ii) follows.

When $r > \hat{r}$, the definition of \hat{r} and part (iv) of the Proposition 3.11 implies that \mathcal{Y}_r cannot have any local maxima. Also, if $\mathcal{Y}_r''(\xi) = 0$ for some $\xi > 0$, since \mathcal{Y}_r does not have any positive local maxima, equation (3.49) and part (ii) of the Proposition 3.11 implies that $\mathcal{Y}_r''(\xi) > 0$ and hence $x = \xi$ is a strict local minimum. But $\mathcal{Y}_r(0) = 0$ and $\mathcal{Y}_r'(0) = r > 0$, therefore \mathcal{Y}_r must have a positive local maximum at some point in $(0, \xi)$ which is a contradiction. Consequently, $\mathcal{Y}_r''(x) > 0$ for all $0 < x < \omega_r$. Suppose $\lim_{x \to \omega_r} \mathcal{Y}_r(x)$ is finite, say λ_0, then $0 < \mathcal{Y}_r(x) < \lambda_0$ for all $0 < x < \omega_r$. Thus by integrating (3.47), we obtain $\omega_r = +\infty$ and (3.50) holds. But $\mathcal{Y}_r(x) > (r - \hat{r})x + \mathcal{Y}_r(x)$ each x, by part (i) of the Proposition 3.11. Consequently $\lim_{x \to \omega_r} \mathcal{Y}_r(x) = +\infty$ and hence $\lambda_0 = +\infty$ and this is a contradiction.

Therefore, we conclude that $\lim_{x \to \omega_r} \mathcal{Y}_r(x) = +\infty$. This completes the proof.

Proposition 3.14 Let the point \hat{r} and the function H be as in Proposition 3.13. Then

(i) H is a continuous strictly increasing function defined on $(0, \hat{r})$ and it takes all the values in the interval $(0, p_0)$.

(ii) $\lim_{r \to 0^+} H(r) = 0$ and $\lim_{r \to \hat{r}^-} H(r) = p_0$.

Proof. Part (i) of the Proposition 3.13 implies that $H(r)$ is finite and $0 < H(r) < p_0$ for each r in $(0, \hat{r})$. Also there is a point ξ_r such that $0 < \xi_r < z_r$ and $H(r) = \mathcal{Y}_r(\xi_r)$. By part (ii) of the Proposition 3.13, we have $\mathcal{Y}_r(\xi_r) < \mathcal{Y}_r(\xi_r) < p_0$. Therefore, by (3.49), $\mathcal{Y}_r'(z_r) < 0$ and $x = \xi_r$ is a strict local maximum. By part (ii) of Proposition 3.11, \mathcal{Y}_r cannot have any local minima and therefore this local maximum point $x = \xi_r$ is unique. Since $\mathcal{Y}_r(x)$ is jointly continuous in (r, x) and using part (i) of Proposition 3.11, it evidently follows that $H(\cdot)$ is a continuous strictly increasing function on $(0, \hat{r})$. This proves part (i).

When $r = 0$, the function \mathcal{Y}_0 has a strict local maximum $x = 0$ and is concave in a neighborhood of $x = 0$ as we have noticed in the proof of part (i) of Proposition 3.13. Thus, we can pick a $\delta_0 > 0$ such that $\mathcal{Y}_0(x) < 0$ on $(0, 2\delta_0)$. In particular, $\mathcal{Y}_0(\delta_0) < 0$. For a given $\epsilon > 0$, using part (i) of Proposition 3.11 and joint continuity of $\mathcal{Y}_r(x)$ in both r and x, we can find $\eta_0 > 0$ such that $\mathcal{Y}_r(\delta_0) < 0$ and $|\mathcal{Y}_0(x) - \mathcal{Y}_r(x)| < \epsilon$ for all x in $[0, \delta_0]$ and for all r in $[0, \eta_0]$. Thus $0 < H(r) < \epsilon$ for each $0 < r < \eta_0$. Consequently $\lim_{r \to 0^+} H(r) = 0$. The fact that $\lim_{r \to \hat{r}^-} H(r) = p_0$ can also be proved by combining the joint continuity of $\mathcal{Y}_r(x)$, the monotonicity property of \mathcal{Y}_r as in part (i) of the Proposition 3.11 and the fact that $\lim_{x \to \omega_r} \mathcal{Y}_r(x) = p_0$. This completes the proof.
Proof of Theorem 3.10. Let $0 < p < p_0$. By the previous proposition, there exists a unique r_p in $(0, \hat{r})$ and a unique point ξ_{r_p} such that

$$p = H(r_p) = \mathcal{Y}_{r_p}(\xi_{r_p}).$$

Furthermore $\mathcal{Y}_{r_p}(x) > 0$ when $0 < x < \xi_{r_p}$. We relabel the point ξ_{r_p} by b_p^* and the function \mathcal{Y}_{r_p} by \mathcal{Y}_p on the interval $[0, b_p^*]$. Then the point $b_p^* > 0$ and the function $\mathcal{Y}_p(\cdot)$ satisfies (3.34) and (3.35).

For part (ii), consider $\hat{r} > 0$ given in (3.52) and the associated function $\mathcal{Y}_{\hat{r}}(\cdot)$ as described in the Proposition 3.13. We simply relabel this function as $\mathcal{Y}_0(\cdot)$. Then clearly \mathcal{Y}_0 satisfies (3.42) and (3.43). This completes the proof. \hfill \blacksquare

Remark 3.15 A similar parametrization method was used in [13]. However, in [13] the HJB equation (corresponding to a long run average cost problem) can be considered as a first-order non-linear differential equation (in terms of the derivative) - see Theorems 3.1 and 4.2 of [13]. For the infinite horizon discounted cost minimization problem considered in this article, the situation is much more difficult and we have a truly second-order non-linear differential equation (see (2.15) and (2.16)) for the value function. Hence, the parametrization method used here is more involved than in [13]. In fact, solving the infinite horizon discounted cost minimization problem is, in some sense, more general than the long-run average cost minimization problem since it is possible to obtain optimal controls for the latter from those of the former problem by letting the discount factor δ tend to zero. For such an approach, see [33].

4 Asymptotic optimality

In this section we provide the proof of our main result, Theorem 2.8. This proof involves showing the policy proposed in Definition 2.7 is asymptotically optimal, using Theorem 3.8 from Section...
3. The proof of Theorem 2.8 and other weak convergence results leading to this proof are given in Subsection 4.2. These proofs also use properties of the “regulator-maps” discussed first in Subsection 4.1.

4.1 Regulator maps

Definition 4.1 (generalized regulator maps) Let \(u : \mathbb{R} \to \mathbb{R} \) be a Lipschitz continuous, nonnegative function and \(\gamma > 0 \) be a constant. Then

One-sided generalized regulator mapping is a mapping

\[
(\phi^u, \psi^u) : \mathcal{D}([0, \infty), \mathbb{R}) \to \mathcal{D}([0, \infty), [0, \infty) \times [0, \infty))
\]

such that for any given \(w \in \mathcal{D}([0, \infty), \mathbb{R}) \) as in Definition 4.1, \((\tilde{q}, \tilde{t}) \equiv (\phi^u(w), \psi^u(w))(w)\) satisfies

(i) \(\tilde{q}(t) = w(t) - \int_0^t [u(\tilde{q}(s))] + \gamma \tilde{q}(s) \] \(ds \) \(+ \tilde{t}(t) \geq 0, \ \forall t \geq 0, \)

(ii) \(\tilde{t}(\cdot) \) is nondecreasing, \(\tilde{t}(0) = 0 \) and \(\int_0^\infty \tilde{q}(t) d\tilde{t}(t) = 0. \)

Two-sided generalized regulator mapping is defined for any real \(b \in (0, \infty) \) as a mapping

\[
(\phi^u_b, \psi^u_1, \psi^u_2) : \mathcal{D}([0, \infty), \mathbb{R}) \to \mathcal{D}([0, \infty), [0, b] \times [0, \infty) \times (0, \infty))
\]

such that for any given \(w \in \mathcal{D}([0, \infty), \mathbb{R}) \) with \(0 \leq w(0) \leq b \) and \((\tilde{q}, \tilde{t}, k) \equiv (\phi^u_b, \psi^u_1, \psi^u_2)(w)\) satisfies

(i) \(\tilde{q}(t) = w(t) - \int_0^t [u(\tilde{q}(s))] + \gamma \tilde{q}(s) \] \(ds \) \(+ \tilde{t}(t) - k(t) \in [0, b], \ \forall t \geq 0, \)

(ii) \(\tilde{t}(\cdot), k(\cdot) \) are both nondecreasing, \(\tilde{t}(0) = k(0) = 0, \ \int_0^\infty \tilde{q}(t) d\tilde{t}(t) = \int_0^\infty (b - \tilde{q}(t))^+ dk = 0. \)

The argument for the existence and uniqueness of the two types of generalized regulator mappings can be found in Lemma 4.1 (i) of [32] and Lemma 4.1 (i) of [26]. Let \(w \in \mathcal{D}([0, \infty), \mathbb{R}) \) be as in Definition 4.1. We introduce the unique solution \(\nu(\cdot) \) and \(\nu_b(\cdot) \) to the following integral equations:

\[
\nu(t) = w(t) - \int_0^t [u(\phi(\nu)(s)) + \gamma \phi(\nu)(s)] ds, \ t \geq 0,
\]

\[
\nu_b(t) = w(t) - \int_0^t [u(\phi_b(\nu_b)(s)) + \gamma \phi_b(\nu_b)(s)] ds, t \geq 0,
\]

(4.1)

where \((\phi, \psi)\) be the conventional one-sided regulator map (or the Skorohod map) on \([0, \infty)\) and \((\phi_b, \psi_1, \psi_2)\) be the two-sided regulator map (or the Skorohod map) on \([0, b]\) (see [28], [17]). Observe that these conventional one-sided and two-sided regulator maps can be obtained from Definition 4.1 by setting \(u \equiv 0 \) and \(\gamma = 0 \). Now define the maps \(\mathcal{M}^u(\cdot), \mathcal{M}^u_b(\cdot) \) from \(\mathcal{D}([0, \infty), \mathbb{R}) \) to \(\mathcal{D}([0, \infty), \mathbb{R}) \) as follows:

\[
\mathcal{M}^u(\cdot) \equiv \nu(\cdot), \mathcal{M}^u_b(\cdot) \equiv \nu_b(\cdot).
\]
As shown in [32], the explicit forms of the generalized regulator mappings in Definition 4.1 can be given in terms of the conventional regulator-map as:

\[
(\phi^{u,\gamma}, \psi^{u,\gamma})(w) = (\phi, \psi)(M^{u,\gamma}(w)),
\]

\[
(\phi_b^{u,\gamma}, \psi_{b,1}^{u,\gamma}, \psi_{2,b}^{u,\gamma})(w) = (\phi_b, \psi_{1,b}, \psi_{2,b})(M_b^{u,\gamma}(w)),
\]

where \(w \in D([0, \infty), R) \) is as given in Definition 4.1 The properties of the two sided regulator map described below are generalizations of the work of [32].

The following Proposition provides some properties of the regulator maps described above. Most of the properties are described in Lemma 4.1 of [32], but we state it in a form that is convenient for our proofs, and a short outline of the proofs of these provided along the lines of those in [32].

Proposition 4.2 Let \(w \) and \(w_n, n \geq 1 \) be as in Definition 4.1, and let \(\gamma_n > 0, \gamma > 0 \) be such that \(\gamma_n \to \gamma \) as \(n \to \infty \). Also assume the function \(u \) and the sequence of functions \(\{u_n\} \) are non-negative uniformly Lipschitz continuous (with the same Lipschitz constant \(\kappa_u \)) and satisfies

\[||u_n - u||_{\infty} \equiv \sup_{x \in IR} |u_n(x) - u(x)| \to 0, \text{ as } n \to \infty. \]

Then for some universal constant \(\tilde{c} > 0 \), the following holds for all \(T > 0 \):

\(\begin{align*}
(\text{a}) & \quad \text{There exists } n_0 \geq 1 \text{ such that for } n \geq n_0, \\
& \quad ||\phi^{u_n,\gamma_n}(w)||_T \leq \tilde{c} ||w||_T. \\
& \quad ||\psi_{2,b}^{u_n,\gamma_n}(w)||_T \leq \tilde{c} \left(||w||_T + \sup_{0 \leq t \leq T} |\psi_{2,b}(w)(t) - \psi_{2,b}(w)(t-)| \right). \\
(\text{b}) & \quad \text{If } \lim_{n \to 0} ||w_n - w||_T = 0, \text{ then} \\
& \quad \lim_{n \to 0} ||\phi^{u_n,\gamma_n}(w_n) - \phi^{u,\gamma}(w)||_T \lor ||\psi^{u_n,\gamma_n}(w_n) - \psi^{u,\gamma}(w)||_T = 0, \\
& \quad \lim_{n \to 0} ||\phi_b^{u_n,\gamma_n}(w_n) - \phi_b^{u,\gamma}(w)||_T \lor ||\psi_b^{u_n,\gamma_n}(w_n) - \psi_b^{u,\gamma}(w)||_T \lor ||\psi_{2,b}^{u_n,\gamma_n}(w_n) - \psi_{2,b}^{u,\gamma}(w)||_T = 0. \\
\end{align*} \]

In other words, part (b) states that for \(n \to \infty \), if \(w_n \to w \) uniformly on compacts (u.o.c.), \(w_n \to w \) uniformly on \(IR \) and \(\gamma_n \to \gamma \), then \((\phi^{u_n,\gamma_n}, \psi^{u_n,\gamma_n})(w_n) \to (\phi^{u,\gamma}, \psi^{u,\gamma})(w) \) u.o.c., and \((\phi_b^{u_n,\gamma_n}, \psi_{b,1}^{u_n,\gamma_n}, \psi_{2,b}^{u_n,\gamma_n})(w_n) \to (\phi_b^{u,\gamma}, \psi_{b,1}^{u,\gamma}, \psi_{2,b}^{u,\gamma})(w) \) u.o.c.

Proof. First note that from the definition of \(M^{u_n,\gamma_n} \) and \(M_b^{u_n,\gamma_n} \) in (4.1) and the fact that \(u_n \geq 0 \), it follows that

\[M^{u_n,\gamma_n}(w)(t) \leq w(t), \text{ and } M_b^{u_n,\gamma_n}(w)(t) \leq w(t), \forall t \geq 0. \]

Hence, by the monotonicity property of the conventional regulator maps in (4.2) (see [17]), we obtain that for all \(n \geq 1 \),

\[\begin{align*}
0 & \leq \phi^{u_n,\gamma_n}(w) \equiv \phi(M^{u_n,\gamma_n}(w)) \leq \phi(w), \\
0 & \leq \psi_{2,b}^{u_n,\gamma_n}(w) \equiv \psi_{2,b}(M_b^{u_n,\gamma_n}(w)) \leq \psi_{2,b}(w). \\
\end{align*} \]

The first part of (a) follows from the Lipschitz continuity of the conventional regulator map \(\phi(\cdot) \).

For the second part of (a), let \(Osc(x, [0, T]) = \sup_{0 \leq t_1 < t_2 \leq T} |x(t_2) - x(t_1)| \), for any \(x \in D([0, \infty), IR) \). Then, following the proof of Lemma 4.1 (ii)(c) in [32], we get that

\[Osc \left(\psi_{2,b}^{u_n,\gamma_n}(w), [0, T] \right) \leq \kappa \left(Osc(w, [0, T]) + \sup_{0 \leq t \leq T} |\psi_{2,b}(w)(t) - \psi_{2,b}(w)(t-)| \right), \]

25
for some constant $\kappa > 0$ (possibly depending on b) and for $n \geq n_0$. Note that $\psi_{2,n}^{u_n,\gamma_n}(w)$ is a non-decreasing function with $\psi_{2,b}^{u_n,\gamma_n}(w)(0) = 0$ which implies $\text{Osc} \left(\psi_{2,b}^{u_n,\gamma_n}(w), [0, T] \right) = \psi_{2,b}^{u_n,\gamma_n}(w)(T)$. Since $\text{Osc}(x, [0, T]) \leq 2||x||_T$, for any $x \in \mathcal{D}([0, \infty), \mathcal{R})$, the proof of the last part follows from the display above.

For part (b), let $\nu \equiv \mathcal{M}^{u,\gamma}(w), \nu_n \equiv \mathcal{M}^{u_n,\gamma_n}(w_n)$ satisfy the first equation of (4.1). Straightforward calculations yield that for all $t \in [0, T],$

$$|\nu_n(t) - \nu(t)| \leq |w_n(t) - w(t)| + \int_0^t |u_n(\phi(\nu_n))(s) - u(\phi(\nu))(s)|ds + \int_0^t |\gamma_n\phi(\nu_n)(s) - \gamma\phi(\nu)(s)|ds$$

$$\leq |w_n(t) - w(t)| + \int_0^t |u_n(\phi(\nu_n)(s)) - u(\phi(\nu_n)(s))|ds + \int_0^t |u(\phi(\nu_n)(s)) - u(\phi(\nu))(s)|ds$$

$$+ \int_0^t \gamma_n|\phi(\nu_n)(s) - \phi(\nu)(s)|ds + |\gamma_n - \gamma| \int_0^t |\phi(\nu)(s)|ds.$$

Hence, using the Lipschitz continuity of the conventional regulator map ϕ (with respect to the uniform norm on compacts, with Lipschitz constant 2) and the Lipschitz continuity of u with Lipschitz constant κ_u, we obtain

$$||\nu_n - \nu||_t \leq ||w_n - w||_t + ||u_n - u||_\infty + \int_0^t \kappa_u|\phi(\nu_n)(s) - \phi(\nu)(s)|ds$$

$$+ c_1 \int_0^t |\phi(\nu_n)(s) - \phi(\nu)(s)|ds + T||\phi(\nu)||_T |\gamma_n - \gamma|$$

$$\leq \left[||w_n - w||_T + ||u_n - u||_\infty + T||\phi(\nu)||_T |\gamma_n - \gamma| \right]$$

$$+ 2(\kappa_u + c_1) \int_0^t ||\nu_n - \nu||_s ds,$$

where $c_1 = \sup_{n \geq 1} \{\gamma_n\}$. Thus, by Gronwall’s inequality, we have for all $T > 0$

$$||\nu_n - \nu||_T \leq \left[||w_n - w||_T + ||u_n - u||_\infty + T||\phi(\nu)||_T |\gamma_n - \gamma| \right] e^{-2(\kappa_u + c_1)T}.$$

Hence if $||w_n - w||_T \rightarrow 0$ as $n \rightarrow \infty$, then $||\mathcal{M}^{u_n,\gamma_n}(w_n) - \mathcal{M}^{u,\gamma}(w)||_T \equiv ||\nu_n - \nu||_T \rightarrow 0$ as $n \rightarrow \infty$. Similar arguments yield that as $n \rightarrow \infty$, if $||w_n - w||_T \rightarrow 0$ then $||\mathcal{M}^{u_n,\gamma_n}_b(w_n) - \mathcal{M}^{u,\gamma}_b(w)||_T \rightarrow 0$. Thus, by the (Lipschitz) continuity of the maps ϕ, ψ, ϕ_0 and the continuity of $\psi_{1,b}, \psi_{2,b}$ (see Theorem 14.8.1 of [34]) along with the representations of regulator maps given in (4.1) concludes the proof of the proposition.

4.2 Weak convergence analysis.

In this section, we prove the main theorem and other necessary results involving the processes introduced in Sections 2 and 3. We begin this section by giving alternative representations of such processes using the generalized regulator maps and define few other associated processes.

Using the results in Section 3 and the definition of the regulator processes in Definition 4.1, the solution of the BCP can be expressed as follows:

$$(X^*_p, L^*_p, U^*_p) = (X^*_{p,x}, L^*_{p,x}, U^*_{p,x}) = (\phi^{u^*,\gamma}, \psi^{u^*,\gamma}, \psi^{u^*,\gamma})(W_x),$$

(4.3)
where \(W_x = x + \sigma W \) is a Brownian motion starting from \(x \geq 0 \) with zero drift and variance \(\sigma^2 = 2\lambda \) and \(W \) is a standard Brownian motion as in (3.1). When the reference to value of the parameter \(p \) is not important, we simply identify \((X^*_x, L^*, u^*, U^*, b^*)\) as \((X^*_{p,x}, L^*_p, u^*_p, U^*_p, b^*_p)\). We first state a general result about alternative representations of our discounted cost functions (see Lemma 4.2 of [32] for a similar result). Here the scaled processes are the ones defined in Section 2.3.

Lemma 4.3 Let \(\bar{J}_p(x, u, U) \) and \(J_p(\lambda, \mu, b) \) be as defined in (3.4) and (2.14) respectively.

(a) For any admissible policy \((u, U)\) for the BCP defined in Definition 3.1, we have

\[
\bar{J}_p(x, u, U) = E \left(\int_0^\infty \delta e^{-\delta t} \left\{ \beta \gamma \int_0^t X_x(s)ds + \int_0^t C(u(s))ds + p U(t) \right\} dt \right).
\]

(b) For any admissible control \((\lambda, \mu, b)\) for the queueing system (see Definition 2.2), we have

\[
J_p(\lambda, \mu, b) = \lim_{n \to \infty} E \left(\int_0^\infty \delta e^{-\delta t} \left\{ \beta(n\gamma) \int_0^t \bar{Q}_n(s)ds + \int_0^t C(u_n(\bar{Q}_n(s)))ds + p U_n(t) \right\} dt \right).
\]

Proof. Note that for all \(t \geq 0, \)

\[
e^{-\delta t} = \int_t^\infty \delta e^{-\delta s} ds = \int_{R^1} I_{[t, \infty)}(s) \delta e^{-\delta s} ds \quad (4.4)
\]

From (4.4) and the non-negativity of all the integrands below, we can interchange the order of integration using Fubini-Tonelli’s theorem, and consequently we obtain

\[
\int_0^\infty e^{-\delta t} \left\{ \beta \gamma X_x(t) + C(u(t)) \right\} dt + p dU(t)
\]

\[
= \int_0^\infty \int_0^\infty I_{[t, \infty)}(s) \delta e^{-\delta s} \left\{ \beta \gamma X_x(t) + C(u(t)) \right\} ds + p dU(t) ds
\]

\[
= \int_0^\infty \delta e^{-\delta s} \left\{ \int_0^t \beta \gamma X_x(t) + C(u(t)) \right\} dt + p U(s) ds.
\]

This proves part (a). Similar calculation yields part (b) as well. \(\square \)

Next we define the following time-change processes: For each \(n \geq 1 \) and \(t \geq 0 \), we let

\[
\tau^A_n(t) = \int_0^t \bar{\lambda}_n(\sqrt{n} \bar{Q}_n(s))ds, \quad \tau^S_n(t) = \int_0^t \bar{\mu}_n(\sqrt{n} \bar{Q}_n(s))ds, \quad \tau^R_n(t) = \int_0^t \gamma_n \sqrt{n} \bar{Q}_n(s)ds, \quad (4.5)
\]

where \(\bar{\lambda}_n(x) = \lambda_n(x)I_{[x < \sqrt{nb}]} \), \(\bar{\mu}_n(x) = \mu_n(x)I_{[x > 0]} \) are as in Section 2. Also define

\[
\hat{M}^A_n(t) \equiv \hat{Y}^A_n(\tau^A_n(t)), \quad \hat{M}^S_n(t) \equiv \hat{Y}^S_n(\tau^S_n(t)), \quad \text{and} \quad \hat{M}^R_n(t) \equiv \hat{Y}^R_n(\tau^R_n(t)). \quad (4.6)
\]

Then from (2.13), we have the following alternative representation of \(\hat{W}_n: \)

\[
\hat{W}_n(t) = \hat{M}^A_n(t) - \hat{M}^S_n(t) - \hat{M}^R_n(t), \quad n \geq 1, t \geq 0. \quad (4.7)
\]
Using the existence, uniqueness and other properties of the generalized regulator maps in Definition 4.1, we obtain that for any admissible control \((\lambda, \mu, b)\), the associated processes in the queueing system have the following representation. For \(n \geq 1\),

\[
(Q_n, \hat{L}_n, \hat{U}_n) = \left(\varphi_{b_n}^{u_n, \nu \gamma_n}, \psi_{1,b_n}^{u_n, \nu \gamma_n}, \psi_{2,b_n}^{u_n, \nu \gamma_n} \right) (\hat{W}_n), \quad \text{if } b < \infty,
\]

\[
(Q_n, \bar{L}_n) = \left(\varphi_{u_n}^{u_n, \nu \gamma_n}, \psi_{u_n}^{u_n, \nu \gamma_n} \right) (\bar{W}_n), \quad \text{if } b = \infty.
\]

We also define the following fluid scaled version of the processes: For \(n \geq 1\), \(t \geq 0\), let

\[
\check{Q}_n(t) \doteq \frac{1}{n} Q_n(nt) = \frac{1}{\sqrt{n}} \hat{Q}_n(t), \quad \check{L}_n(t) \doteq \frac{1}{n} L_n(nt) = \frac{1}{\sqrt{n}} \bar{L}_n(t),
\]

\[
\check{U}_n(t) \doteq \frac{1}{n} U_n(nt) = \frac{1}{\sqrt{n}} \hat{U}_n(t), \quad \text{and } \check{W}_n(t) = \frac{1}{\sqrt{n}} \bar{W}_n(t).
\]

For each \(n \geq 1\) and \(x \geq 0\), we let \(\bar{u}_n(x) = \frac{u_n(\sqrt{n}x)}{\sqrt{n}}\). By Definition 2.2, we deduce that

\[
\|\bar{u}_n\|_\infty = \sup_{x \geq 0} |\bar{u}_n(x)| \to 0, \quad \text{as } n \to 0.
\]

Hence, from (4.9) and (2.12), we have

\[
\check{Q}_n(t) = \frac{1}{\sqrt{n}} \hat{Q}_n(t) = \check{W}_n(t) - \int_0^t [\bar{u}_n(\check{Q}_n(s)) + (n \gamma_n) \check{Q}_n(s)] ds + \check{L}_n(t) - \check{U}_n(t), \quad t \geq 0.
\]

From the properties of the regulator maps in Definition 4.1 and (4.9), it follows that

\[
(Q_n, \hat{L}_n, \hat{U}_n) = \left(\varphi_{b_n}^{u_n, \nu \gamma_n}, \psi_{1,b_n}^{u_n, \nu \gamma_n}, \psi_{2,b_n}^{u_n, \nu \gamma_n} \right) (\hat{W}_n), \quad \text{if } b < \infty,
\]

\[
(Q_n, \bar{L}_n) = \left(\varphi_{u_n}^{u_n, \nu \gamma_n}, \psi_{u_n}^{u_n, \nu \gamma_n} \right) (\bar{W}_n), \quad \text{if } b = \infty.
\]

The following representation also follows from (4.5) and (4.12):

\[
\check{Q}_n(t) = \check{W}_n(t) + [\tau_{n}^A(t) - \tau_{n}^S(t) - \tau_{n}^R(t)] + \check{L}_n(t) - \check{U}_n(t), \quad \text{for all } t \geq 0, \ n \geq 1.
\]

Proposition 4.4 Let \((\lambda, \mu, b)\) be an admissible control policy (as in Definition 2.2) for the queueing system. Let \(\tau_n = (\tau_n^A, \tau_n^S, \tau_n^R), n \geq 1\) and \(\tau = (\lambda \epsilon, \lambda \epsilon, 0)\), where \(\tau_n^A, \tau_n^S, \tau_n^R\) are as in (4.5), \(\epsilon(t) \equiv t, t \geq 0\) is the identity function and \(0\) denotes the function that is identically zero. Then,

(a) \(\lim_{n \to \infty} \sup_{t \in [0, T]} ||\tau_n(t) - \tau(t)|| = 0\) a.s. as \(n \to \infty\), for all \(T > 0\).

(b) \(\check{W}_n \Rightarrow \check{W}_0\) as \(n \to \infty\), where \(\check{W}_0\) is a Brownian motion starting from zero and has infinitesimal mean and variance \(\theta\) and \(2\lambda\) respectively.

(c) If \(b < \infty\), we let \((X_0, \check{L}, \check{U}) \doteq (\varphi_{b_n}^{u_n, \nu \gamma_n}, \psi_{u_n, \nu \gamma_n}(\check{W}_0))\). In the case of \(b = \infty\), we define \((X_0, \check{L}, \check{U}) \doteq (\varphi^{u_n, \nu \gamma}(\check{W}_0), 0)\). Then in both cases,

\[
(\check{Q}_n, \check{L}_n, \check{U}_n) \Rightarrow (X_0, L, U) \quad \text{as } n \to \infty,
\]

and \((X_0, u, U)\) is admissible for the BCP with the initial value \(x = 0\) (see Definition 3.1).

(d) There exists a constant \(\tilde{c} > 0\), such that for all \(n \geq 1\) and \(T > 0\)

\[
E \left[\sup_{0 \leq t \leq T} |\check{W}_n(t)|^2 \right] \leq \tilde{c} (T^2 + T).
\]
Proof. We begin by proving part (a). As we show below, the proofs of parts (b), (c) and (d) follow from part (a). The main steps for the proof of part (a) are: we first bound the time-change processes τ_n using the functional strong law of large numbers (see (4.17) and (4.18) below). Then, this bound together with the Martingale structure of \bar{W}_n implies that $\bar{W}_n \to 0$ almost surely, u.o.c. (see (4.19)). With the help of the properties of the generalized regulator maps, we complete the proof of part (a) (see (4.21), (4.22) and (4.23) below).

Fix $T > 0$. Note that from (2.1), we have

$$Q_n(t) \leq Y_n^A \left(\int_0^t \bar{\lambda}_n(Q_n(s)) ds \right),$$

for all $n \geq 1, t \geq 0$,

where Y_n^A is as defined in (2.1). Hence, by (4.9) and (4.5), we obtain

$$0 \leq \bar{Q}_n(t) \leq \frac{Y_n^A(n\tau_n^A(t))}{n},$$

for all $n \geq 1, t \geq 0$. (4.15)

Note that by the functional law of large numbers for Poisson process (with intensity 1), it follows that for large n ($n \geq n_0 \equiv n_0(\omega)$),

$$t - 1 \leq \frac{Y_n^A(nt)}{n} \leq t + 1, \text{ for all } t \in [0, cT],$$

(4.16)

where c is as in (2.5). Observe that $\tau_n^A(t) \leq ct \leq cT$ for all $t \in [0, T]$. Hence, by (4.15) and (4.16) we derive the following bound for $n \geq n_0$,

$$0 \leq \bar{Q}_n(t) \leq c(t + 1), \text{ for all } t \in [0, T].$$

Since $\sup_{n \geq 1} \{n\gamma_n\} < \infty$ (by Assumption 2.1), we get

$$\tau_n^R(t) = (n\gamma_n) \int_0^t \bar{Q}_n(s) ds \leq c_1(t + 1)^2 \text{ for all } t \in [0, T],$$

(4.17)

where $c_1 > 0$ is a generic constant which is independent of n and T. Using (2.5) and (4.5), we also obtain

$$\tau_n^A(t) \leq ct, \text{ and } \tau_n^S(t) \leq ct, \text{ for all } t \in [0, T].$$

(4.18)

By the functional strong law of large numbers for any sequence of unit-intensity independent Poisson processes $\{Y_n\}$, we have

$$\sup_{0 \leq t \leq T} \left| \frac{Y_n(nt)}{n} - t \right| \to 0 \text{ a.s., as } n \to \infty.$$
Consequently, by (4.7) and (4.9) we have

\[\hat{W}_n = \frac{1}{\sqrt{n}} [\hat{M}_n^A - \hat{M}_n^S - \hat{M}_n^R] \to 0 \text{ a.s., as } n \to \infty, \]

and this convergence is uniform on compact sets. We can use (4.19), (4.10) and (4.12) together with the continuity properties of the generalized regulator maps established in Proposition 4.2 (b) to conclude that

\[\hat{Q}_n \to 0, \; \hat{L}_n \to 0, \; \text{and } \hat{U}_n \to 0 \text{ a.s., as } n \to \infty, \]

and this convergence is uniform on compact sets. Note that \(b = \infty \) will correspond to representations of the above processes using one-sided generalized maps in (4.12) and \(\bar{b} \), with the continuity properties of the generalized regulator maps established in Proposition 4.2 (b) and this convergence is uniform on compact sets. This completes the proof of part (a).

For part (b), observe that from the functional central limit theorem for Poisson processes:

\[(\hat{A}_n, \hat{S}_n, \hat{R}_n) \Rightarrow (W^A, W^S, W^R) \text{ as } n \to \infty, \]

(4.24)

where \(W^A, W^S, W^R \) are three independent standard Brownian motions with mean 0 and variance \(t \). We can use (4.6), part (a) above and the random time change theorem (see Sec. 14 of [7]) to obtain

\[(\hat{M}_n^A(\cdot), \hat{M}_n^S(\cdot), \hat{M}_n^R(\cdot)) \equiv (\hat{A}_n(\tau_n^A(\cdot)), \hat{S}_n(\tau_n^S(\cdot)), \hat{R}_n(\tau_n^R(\cdot))) \Rightarrow (W^A(\lambda(\cdot)), W^S(\lambda(\cdot)), 0), \]

(4.25)

as \(n \to \infty \). Here, we also use the continuity of the weak limit of \((\hat{A}_n, \hat{S}_n, \hat{R}_n) \) and the sum (and the difference) is a continuous map on the space of continuous functions. Hence, from (4.25) and the continuous mapping theorem, we obtain

\[\hat{W}_n(\cdot) = \hat{M}_n^A(\cdot) - \hat{M}_n^S(\cdot) - \hat{M}_n^R(\cdot) \Rightarrow W^A(\lambda(\cdot)) - W^S(\lambda(\cdot)) \text{ as } n \to \infty. \]
Notice that, if we define $W_0(\cdot) \triangleq W^A(\lambda \cdot) - W^S(\lambda \cdot)$, then by the independence of W^A and W^S, W_0 is a Brownian motion starting from 0 and has mean 0, variance 2λ. The proof of (b) is now complete.

To prove part (c), note that from part (b) we have

$$\hat{W}_n \Rightarrow W_0 \text{ as } n \to \infty.$$

The weak limit above is continuous and the space of all continuous functions is separable. Hence, by Skorohod representation theorem (Theorem 6.7 in [7]), one can assume that the above convergence takes place almost surely between $\{\hat{W}'_n\}, W'_0$ defined on some common probability space and $\{(W'_n), W'_0\}$ has the same law as $\{(W_n), W_0\}$. Denoting these new elements by $\{(W_n), W_0\}$ again (to simplify notation), we have the following convergence uniformly on compact sets.

$$W_n \to W_0 \text{ a.s., as } n \to \infty.$$

In the case of $b = \infty$, by (4.8) and Proposition 4.2 (b) we obtain,

$$(\hat{Q}_n, \hat{L}_n, \hat{U}_n) = (\phi_{b,n}^{\mu,n\gamma}, \psi_{1,b}^{\mu,n\gamma}, \psi_{2,b}^{\mu,n\gamma})(\hat{W}_n) \to (\phi_b^{\mu,\gamma}, \psi_{1,b}^{\mu,\gamma}, \psi_{2,b}^{\mu,\gamma})(W_0) \equiv (X_0, L, U) \text{ a.s.,}$$

as $n \to \infty$. When $b < \infty$, with the same reasoning, we have

$$(\hat{Q}_n, \hat{L}_n) = (\phi_{b,n}^{\mu,n\gamma}, \psi_{b}^{\mu,n\gamma})(\hat{W}_n) \to (\phi_b^{\mu,\gamma}, \psi_b^{\mu,\gamma})(W_0) \equiv (X_0, L) \text{ a.s., as } n \to \infty. \quad (4.26)$$

Both of these convergence results hold uniformly on compact sets. Therefore, we can conclude that for each $b \in (0, \infty]$

$$(\hat{Q}_n, \hat{L}_n, U_n) \Rightarrow (X_0, L, U) \text{ as } n \to \infty,$$

with the convention that $\hat{U}_n = U \equiv 0$ if $b = \infty$. By the properties of the regulator maps in Definition 4.1 and the properties of W_0 in part (b), it is clear that the weak limit (X_0, L, U) satisfies the properties of the corresponding processes of the BCP (see (3.1)). Hence we conclude that the limit (X_0, u, U) is admissible for the BCP as required in Definition 3.1, and the proof of part (c) is complete.

Now we prove part (d). First observe that $\hat{Y}_n^A, \hat{Y}_n^S, \hat{Y}_n^R$ defined in (2.10) are scaled compensated Poisson processes, and hence these processes are martingales. So, by Doob’s maximal inequality (Corollary 2.17 of Chapter 2 of [10]), we get for $T > 0$,

$$E \left[\sup_{0 \leq t \leq T} |\hat{Y}_n^A(t)|^2 \right] \leq 4E \left[|\hat{Y}_n^A(T)|^2 \right] = 4T.$$

Hence by (4.6) and (4.18), for all $T > 0$ the following estimate holds.

$$E \left[\sup_{0 \leq t \leq T} |\hat{M}_n^A(t)|^2 \right] \leq 4cT. \quad (4.27)$$

Similar calculations involving \hat{Y}_n^S, \hat{Y}_n^R, with (4.6), (4.18) and (4.17) yield

$$E \left[\sup_{0 \leq t \leq T} |\hat{M}_n^S(t)|^2 \right] \leq 4cT, \text{ and } E \left[\sup_{0 \leq t \leq T} |\hat{M}_n^R(t)|^2 \right] \leq 2c_1(T + 1)^2. \quad (4.28)$$
Hence, from the definition of \(\hat{W}_n \) in (4.7) together with (4.27) and (4.28), we obtain that
\[
E \left[\sup_{0 \leq t \leq T} |\hat{W}_n(t)| \right]^2 \leq 4cT + 4cT + 2c_1(T + 1)^2 \leq C(T + 1)^2, \quad \text{for all } T > 0,
\]
where \(C > 0 \) is a generic constant independent of \(n \) and \(T \). This completes the proof of part (d), and that of the proposition.

Theorem 4.5 Let \((\lambda^*, \mu^*, b^*)\) be a proposed candidate for optimal policy as given in Definition 2.7. Then,
(a) \((\hat{W}^*_n, \hat{Q}^*_n, \hat{L}^*_n, U^*_n) \Rightarrow (W_0, X_0^*, L^*, U^*)\) as \(n \to \infty \) where the \(W_0 \) is a standard Brownian motion starting from zero and \((X_0^*, L^*, U^*)\) are the processes associated with the solution of the BCP with \(W_0 \) and the initial point \(x = 0 \), as in (3.30). Here if \(b^* = \infty \), then \(\hat{U}^*_n = U^* \equiv 0 \) and the processes \(X^*_0 \) and \(L^* \) are as described in (3.31).
(b) \(J_p(\lambda^*, \mu^*, b^*) = V_p(0) \) where \(V_p(x) \) represents the value function defined in (3.5).

Remark 4.6 In part (a) of the above theorem, for \((\hat{W}^*_n, \hat{Q}^*_n, \hat{L}^*_n, U^*_n)\), we use an additional superscript * to our notation of the queueing system processes to emphasize that these processes are obtained by using the proposed policy in Definition 2.7. Also, in part (b), for \((\lambda^*, \mu^*, b^*)\), \(J_p(\lambda^*, \mu^*, b^*) \) turned out to be the limit of the right side of (2.14) (instead of the \(\liminf \) in (2.14)).

Proof. Part (a) follows directly from part(c) of Proposition 4.4. We now prove part (b) using part (a). The proof is different for the different values of the cost parameter \(p \), and is described separately in two cases.

Case I: \(0 < p < p_0 \). This case leads to an optimal finite buffer size \(b^* < \infty \) as in Theorem 3.8. Note that by Assumption 2.1 and continuous mapping theorem (for the map \(\eta(x)(t) = \int_0^t x(s)ds, \ t \geq 0, \ x \in \mathcal{D}([0, \infty), [0, \infty)) \) and under uniform convergence on compacts), we obtain
\[
\beta(n\gamma_n) \int_0^t \hat{Q}^*_n(s)ds \Rightarrow \beta \int_0^\infty X^*_0(s)ds \ \text{a.s., as } n \to \infty, \quad (4.29)
\]
uniformly on compact sets. Also note that since \(b^* < \infty \), \(0 \leq \int_0^t \hat{Q}^*_n(s)ds \leq b^*t \) for all \(t \geq 0 \) and (4.29) implies that for each \(t \geq 0 \),
\[
r^0_1(t) \equiv \beta(n\gamma_n) E \left[\int_0^t \hat{Q}^*_n(s)ds \right] \to \beta \gamma \int_0^t X^*_0(s)ds \ \text{as } n \to \infty. \quad (4.30)
\]
Also, using Cauchy-Schwartz inequality, we derive for \(c_1 = \max_{n \geq 1} \{n\gamma_n\} < \infty \), that
\[
0 \leq \int_0^\infty d e^{-\delta t} [r^1_1(t)]^2 dt \leq [\beta^2 c_1^2 b^2 \gamma] \int_0^\infty d e^{-\delta t} t^2 dt < \infty,
\]
and this bound on the right side does not involve \(n \). Hence, we have established a sufficient condition
(see (3.18) of Section 3 of [7]) for the uniform integrability to conclude (from (4.30)) that

\[
\lim_{n \to \infty} E \int_0^\infty \delta e^{-\delta t} \left\{ \beta (n \gamma_n) \int_0^t Q_n^*(s) ds \right\} dt = \lim_{n \to \infty} \int_0^\infty \delta e^{-\delta t} r_n(t) dt = \int_0^\infty \delta e^{-\delta t} E \left[\beta \gamma \int_0^t X_0^*(s) ds \right] dt = E \int_0^\infty \delta e^{-\delta t} \left\{ \beta \gamma \int_0^t X_0^*(s) ds \right\} dt.
\]

\hspace{1cm} (4.31)

Also combining the admissibility of the proposed control, the fact that \(u_n^* = u^* \) and the properties of the cost function \(C(\cdot) \) in Assumption 2.4 and part (a) above together with the continuous mapping theorem (as in (4.29)) we obtain

\[
\int_0^t C(u^*(X_0^*(s))) ds \Rightarrow \int_0^t C(u^*(X_0^*(s))) ds \text{ as } n \to \infty.
\]

\hspace{1cm} (4.32)

For \(t \geq 0 \), let \(r_2^n(t) \equiv E \left[\int_0^t C(u^*(X_0^*(s))) ds \right] \). Then from the fact that \(0 \leq X_0^*(s) \leq b^* < \infty \) for all \(s \geq 0 \), it similarly follows that

\[
0 \leq \int_0^\infty \delta e^{-\delta t} [r_2^n(t)]^2 dt \leq [c_2]^2 \int_0^\infty \delta e^{-\delta t} t^2 dt < \infty,
\]

\hspace{1cm} (4.33)

and this upper bound is also independent of \(n \). Here \(c_2 = \sup_{y \in [0, \bar{u}]} C(y) \), where \(\bar{u} = \sup_{x \in [0,b^*]} u^*(x) \).

Following the same argument as in (4.31), we obtain

\[
\lim_{n \to \infty} E \int_0^\infty \delta e^{-\delta t} \left\{ \int_0^t C(u_n^*(\hat{Q}_n^*(s))) ds \right\} dt = E \int_0^\infty \delta e^{-\delta t} \left\{ \int_0^t C(u^*(X_0^*(s))) ds \right\} dt.
\]

\hspace{1cm} (4.34)

Note that \(u_n^* \equiv u^* \geq 0 \). Hence, using Assumption 2.1, (4.8), nondecreasing nature of \(\hat{U}_n^* \) and the second bound in part (a) of Proposition 4.2(a), we have

\[
0 \leq \hat{U}_n^*(t) = ||\hat{U}_n^*||_t = \left\| \psi_{u^*,\tau}^{\gamma_n} (\hat{W}_n^*) \right\|_t \leq \bar{c} \left(||\hat{W}_n^*||_t + \sup_{0 \leq t \leq T} |\psi_{u^*,\tau} (\hat{W}_n^*(t)) - \psi_{u^*,\tau} (\hat{W}_n^*(t^-))| \right), \text{ for all } t \geq 0, n \geq n_0.
\]

\hspace{1cm} (4.35)

\hspace{1cm} (4.36)

But, from the definition of the \(\hat{W}_n^* \) (which involves diffusion scaled time-changed Poisson processes), it follows that (see display (97) in proof of Proposition 4.3 in [32])

\[
\sup_{0 \leq t \leq T} |\psi_{u^*,\tau} (\hat{W}_n^*(t)) - \psi_{u^*,\tau} (\hat{W}_n^*(t^-))| \leq \frac{1}{\sqrt{n}} \text{ for all } t \geq 0, n \geq 1.
\]

Hence, using (4.35) and part (d) of Proposition 4.4, we have for each \(n \geq n_0, t \geq 0 \),

\[
E[\hat{U}_n^*(t)]^2 \leq 2\bar{c}^2 \left(E \left[\sup_{0 \leq s \leq t} |\hat{W}_n^*(s)|\right]^2 + \frac{1}{n} \right) \leq [2\bar{c}^2] \left(\bar{c}(t^2 + t) + 1 \right).
\]

\hspace{1cm} (4.37)

With this upper bound and following the same approach as we used in establishing the convergence in (4.31) and (4.34), we obtain

\[
r_3^n(t) \equiv pE[\hat{U}_n^*(t)] \rightarrow pE[U^*(t)], \text{ for all } t \geq 0 \text{ and } 0 < p < p_0.
\]

\hspace{1cm} (4.38)
Also, by (4.37) we have
\[\int_0^{\infty} \delta e^{-\delta t} \left[\rho_n^2(t) \right]^2 dt \leq p^2 \overline{\delta^2 c} \int_0^{\infty} \delta e^{-\delta t} (t^2 + t) dt < \infty \]
and this upper bound is free of \(n \). Thus, using a similar calculation as in (4.31) and (4.34) above, we obtain
\[\lim_{n \to \infty} E \int_0^{\infty} \delta e^{-\delta t} \left\{ p \hat{U}_n^*(t) \right\} dt = E \int_0^{\infty} \delta e^{-\delta t} \left\{ p U^*(t) \right\} dt. \]
(4.39)
Using (4.31), (4.34), (4.39), definition of the cost function in (2.14), (3.4), and (3.5), the Lemma 4.3 and the fact that \(W_0 \), the weak-limit of \(\{ \hat{X}_n^* \} \) is a standard Brownian motion starting at \(x = 0 \), we derive
\[J_p(\lambda^*, \mu^*, b^*) = \tilde{J}_p(0, u^*, U^*) = V_p(0). \]
(4.40)
This completes the proof for the case \(0 < p < p_0 \).

Case II: \(p \geq p_0 \). This case leads to the optimality of the infinite buffer size \(b^* = \infty \) (see Theorem 3.8). Hence, the proof of this case is somewhat straightforward, since
\[\hat{U}_n^* = U^* \equiv 0. \]
(4.41)
Hence the convergence of the last component of the cost function (the one dealt with in (4.39)) follows trivially. Since, \(u_n^* \equiv u^* \geq 0 \), using Assumption 2.1, (4.8) and the first bound in part (a) of Proposition 4.2, we obtain
\[0 \leq \sup_{0 \leq s \leq t} |\hat{Q}_n^*| = ||\hat{Q}_n^*||_t = \left| \phi_{b,b}^{u^*,n\gamma_n}\left(\hat{W}_n^* \right) \right|_t \leq \bar{c} \sup_{0 \leq s \leq t} |\hat{W}_n^*|, \text{ for all } n \geq 1, t \geq 0, \]
(4.42)
for some \(\bar{c} > 0 \). Hence, using part (d) of Proposition 4.4 and assumptions in Definition 2.2, we have for each \(n \geq 1 \),
\[\int_0^{\infty} \delta e^{-\delta t} E \left[\left\{ \beta(n\gamma_n) \int_0^t \hat{Q}_n^*(s) ds \right\}^2 \right] dt \leq \kappa \int_0^{\infty} \delta e^{-\delta t} t^2 E \left[\sup_{0 \leq s \leq t} |\hat{W}_n^*|^2 \right] dt \leq \kappa \int_0^{\infty} \delta e^{-\delta t} (t^2 + t) dt < \infty, \]
(4.43)
where \(\kappa = [\bar{c}^2 \beta^2 \bar{c}^2] \). Notice that the upper bound above does not involve \(n \). Since (4.29) holds in this case as well, the uniform square integrability in (4.43) provides the required uniform integrability with respect to the product measure \(P \times \mu \), where \(d\mu/dt = \delta e^{-\delta t} \), to conclude
\[\lim_{n \to \infty} E \int_0^{\infty} \delta e^{-\delta t} \left\{ \beta(n\gamma_n) \int_0^t \hat{Q}_n^*(s) ds \right\} dt = E \int_0^{\infty} \delta e^{-\delta t} \left\{ \beta(\gamma) \int_0^t X_0^*(s) ds \right\} dt. \]
(4.44)
Also note that the convergence results in (4.32) holds in this case as well. Recall that, by our definition of optimal drift \(u^* = u_p^* \) in (3.32) of Theorem 3.8, we have
\[u^*(x) = \Psi(V_p'(x)) \text{ and } 0 \leq V_p'(x) < p_0, \]
and \(\Psi \) is a nondecreasing function with \(\Psi(p_0) = \theta_{p_0} < \infty \) (see (3.19) and the discussion above that). Hence,
\[0 \leq u_p^*(x) \equiv u^*(x) \leq \theta_{p_0}, \text{ for all } x \geq 0. \]
Let \(c_2 = \sup_{y \in [0, \rho_0]} C(y) \). Using the above bound, we can obtain the same bound as in (4.33). Hence using (4.34), we conclude that (arguing as in (4.34)) that

\[
\lim_{n \to \infty} E \int_0^\infty \delta e^{-\delta t} \left\{ \int_0^t C(u_n^*(\hat{Q}_n(s)))ds \right\} dt = E \int_0^\infty \delta e^{-\delta t} \left\{ \int_0^t C(u^*(X^*_n(s)))ds \right\} dt. \tag{4.45}
\]

Using (4.41), (4.44), (4.45), the definition of the cost functional in (2.14), (3.4), and (3.5), the Lemma 4.3 and the fact that \(W_0 \), the weak-limit of \(\{X^*_n\} \), is a Brownian motion starting at \(x = 0 \), we derive that

\[
J_p(\lambda^*, \mu^*, b^*) = \bar{J}_p(0, u^*, U^*) = V_p(0). \tag{4.46}
\]

This completes the proof for \(p \geq p_0 \).

Proof of Theorem 2.8:

Theorem 4.5 proves that

\[
J_p(\lambda^*_\zeta, \mu^*_\zeta, b) = V_p(0).
\]

Hence, it is enough to prove that if \((\lambda, \mu, b)\) is any admissible policy satisfying Definition 2.2, then

\[
J_p(\lambda, \mu, b) \geq V_p(0). \tag{4.47}
\]

Note that (4.47) holds trivially if \(J_p(\lambda, \mu, b) = \infty \). Hence, we will assume

\[
J_p(\lambda, \mu, b) < \infty \tag{4.48}
\]

and intend to verify (4.47). Using Assumption 2.4, (2.4), part (c) of Proposition 4.4 and the Skorohod representation theorem, it follows that

\[
\left(\int_0^\infty \hat{Q}_n(s)ds, \int_0^\infty C(u_n(\hat{Q}_n(s)))ds \right) \to \left(\int_0^\infty X_0(s)ds, \int_0^\infty C(u(X_0(s)))ds \right) \text{ a.s., as } n \to \infty, \tag{4.49}
\]

uniformly on compact sets (see (4.29) and (4.32) for a similar argument). Using part (b) of Lemma 4.3, (4.14) and applying Fatou’s lemma twice, we derive

\[
J_p(\lambda, \mu, b) = \liminf_{n \to \infty} E \int_0^\infty \delta e^{-\delta t} \left\{ \beta(n\gamma_n) \int_0^t \hat{Q}_n(s)ds + \int_0^t C(u(\hat{Q}_n(s)))ds + p U_n(t) \right\} ds
\geq E \int_0^\infty \delta e^{-\delta t} \left[\liminf_{n \to \infty} \left\{ \beta(n\gamma_n) \int_0^t \hat{Q}_n(s)ds + \int_0^t C(u(\hat{Q}_n(s)))ds + p U_n(t) \right\} \right] dt
= E \int_0^\infty \delta e^{-\delta t} \left\{ \beta \gamma \int_0^t X_0(s)ds + \int_0^t C(u(X_0(s)))ds + p U(t) \right\} dt \tag{4.50}
\]

where \(X_0 \) and \(U \) are as defined in part (c) of Proposition 4.4. As shown in Proposition 4.4 (c), \((X_0, u, U)\) is an admissible control of the BCP (with \(W_0 \)). Hence, using part (a) of Lemma 4.3 (3.5), we have

\[
E \int_0^\infty \delta e^{-\delta t} \left\{ \beta \gamma \int_0^t X_0(s)ds + \int_0^t C(u(X_0(s)))ds + pU(t) \right\} dt \geq \bar{J}_p(0, u, U) \geq V_p(0). \tag{4.51}
\]
Thus we get from (4.50) - (4.51) that
\[J_p(\lambda, \mu, b) \geq V_p(0). \]
and the proof of the theorem is complete.

We now give a short proof of Corollary 2.9.

Proof of Corollary 2.9: Note that, from the proof of Theorem 4.5, it follows that the proposed policy actually achieves the limit, and hence the asymptotic cost of this policy defined using \(\lim \sup \) in (2.18) is the same as the cost in the that theorem (see the limit calculations before (4.40) and (4.46) in the proof). Hence, we get that
\[I_p(\lambda^*, \mu^*, b^*) = J_p(\lambda^*, \mu^*, b^*). \]
But since \(\lim \inf a_n \leq \lim \sup a_n \) for any sequence \(\{a_n\} \), it follows that
\[J_p(\lambda, \mu, b) \leq I_p(\lambda, \mu, b), \]
for any admissible policy \((\lambda, \mu, b)\). Hence, the proof follows from the conclusion of Theorem 2.8.

Remark 4.7 (Numerically computing the optimal buffer-size) For the given cost structure in (2.14), when \(0 < p < p_0 \), we can compute the finite buffer size \(b^* \) numerically by an algorithm very similar to the one described in Section 5 of [13] (see also [19] for a different approach).

Acknowledgments: We are thankful to Professor Sunil Kumar of Stanford University for a discussion related to his work in [32], which helped us formulate the problem addressed in this article. Arka P. Ghosh is supported by the NSF grant DMS-0608634 and Ananda P. Weerasinghe is supported by the ARO grant W911NF0510032. We are grateful for their support.

References

Arka P. Ghosh Ananda P. Weerasinghe
3216 Snedecor Hall 396 Carver Hall
Department of Statistics Department of Mathematics
Iowa State University Iowa State University
Ames, IA 50011-1210, USA, Ames, IA 50011, USA
apghosh@iastate.edu ananda@iastate.edu